scholarly journals Effects of a Mini Implant’s Size and Site on its Stability Using Resonance Frequency Analysis

2020 ◽  
pp. 030157422095753
Author(s):  
Anil Miglani ◽  
Cyan C

Aim: Temporary anchorage devices (TADs) have become the preferred method of skeletal anchorage in new-age orthodontics. Despite the remarkable success of mini implants in orthodontic treatment results, mini implants’ stability remains a vital issue that has to be resolved, due to the fact that failure rates are broadly variable and might be up to 25%. Objectives: To evaluate the effect of the diameter, implant bone surface contact, thickness of cortical bone, and implant insertion sites on mini implant stability using resonance frequency analysis (RFA). Materials and Method: CBCT of the dry skull was obtained. Buccal and lingual cortical plates of the maxillary and mandibular jaws were measured at 6 mm from the coronal part of the alveolar bone. After placing the implants, the stability was measured using resonance frequency analysis. Results: In the maxillary arch, Pearson correlation showed significant correlation of instability of the implant with the width of the buccal cortical plate and lingual cortical plate and implant contact surface area. In mandibular arch, Pearson correlation showed no significant effect of buccal/lingual cortical plate width, and implant surface contact area in primary stability of varied sized, mini implants. Conclusion: Statistically significant increases in the primary stability of mini implants with an increase in the implant bone contact surface area were found in the maxilla. In the mandible, no significant increase in mini implant stability was found with an increase in the implant contact surface area.

2018 ◽  
Vol 8 ◽  
pp. 139-145
Author(s):  
Ashish Kumar Singh ◽  
Sridhar Kannan ◽  
Nitin Arora ◽  
Yatin Bajaj ◽  
Ameet V. Revankar

Introduction In the last decade, anchorage control with mini-implants has gained enormous credibility in maintaining orthodontic anchorage. Resonance frequency analysis (RFA) has proven to be an adequate method to measure the stability of these mini-implants because of its non-invasiveness and contactless measurement method. Materials and Method Tomas and S.K surgical mini-implants were tested. For this purpose custom fabricated attachment was fabricated to attach the smart peg on orthodontic mini-implant head, and 45 mini-implants were inserted in fresh swine pelvic bone in the density matched sites to that of most common sites where mini-implants are placed in human mandible. Mini-implants of two different lengths with diameter constant were also placed to assess the effect of length on primary stability. Results The mean ISQ of Group 1 (Tomas 10 mm) was 55.53±3.39 while that of Group 2 (S.K Surgical 10mm) was 56.63±3.48 and that of Group 3(S.K Surgical 8 mm) was 55.90±3.48. Difference among the groups were not statistically significant when ANOVA test was used (P >0.05). Conclusion The resonance frequency analysis is applicable to comparatively assess the primary stability of orthodontic mini-implants. There was no difference in primary stability of Tomas and S.K Surgical mini-implant and primary stability was not affected by the length of the mini-implant.


2020 ◽  
Vol 46 (3) ◽  
pp. 182-189 ◽  
Author(s):  
Davide Farronato ◽  
Mattia Manfredini ◽  
Michele Stocchero ◽  
Mattia Caccia ◽  
Lorenzo Azzi ◽  
...  

The aim of this study was to evaluate the influence of bone quality, drilling technique, implant diameter, and implant length on insertion torque (IT) and resonance frequency analysis (RFA) of a prototype-tapered implant with knife-edge threads. The investigators hypothesized that IT would be affected by variations in bone quality and drilling protocol, whereas RFA would be less influenced by such variables. The investigators implemented an in vitro experiment in which a prototype implant was inserted with different testing conditions into rigid polyurethane foam blocks. The independent variables were: bone quality, drilling protocol, implant diameter, and implant length. Group A implants were inserted with a conventional drilling protocol, whereas Group B implants were inserted with an undersized drilling protocol. Values of IT and RFA were measured at implant installation. IT and RFA values were significantly correlated (Pearson correlation coefficient: 0.54). A multivariable analysis showed a strong model. Higher IT values were associated with drilling protocol B vs A (mean difference: 71.7 Ncm), implant length (3.6 Ncm increase per mm in length), and substrate density (0.199 Ncm increase per mg/cm3 in density). Higher RFA values were associated with drilling protocol B vs A (mean difference: 3.9), implant length (1.0 increase per mm in length), and substrate density (0.032 increase per mg/cm3 in density). Implant diameter was not associated with RFA or IT. Within the limitations of an in vitro study, the results of this study suggest that the studied implant can achieve good level of primary stability in terms of IT and RFA. A strong correlation was found between values of IT and RFA. Both parameters are influenced by the drilling protocol, implant length, and substrate density. Further studies are required to investigate the clinical response in primary stability and marginal bone response.


Author(s):  
Reza Harirforoush ◽  
Siamak Arzanpour

This paper investigates primary stability of dental implant that indicates the process of bone-implant integration. This integration is known to happen at the boundary of the bone and dental implant contact surface. The resonance frequency of dental implant is used as the parameter for this investigation due to its high sensitivity to boundary condition variations. In this study, resonance frequency analysis (RFA) of the jaw-implant structure is carried out using finite element modeling. The FEM analyses are conducted in ANSYS modal analysis simulation environment. The FEM model of the structure includes titanium implant, Cancellous and cortical bone. Different implant-bone interface conditions are studied for this investigation. Various boundary conditions were studied to identify natural frequencies of jaw-implant structure. Our analysis shows that the resonance frequency of the implant increases during the healing period and reaches a plateau when the implant-bone interface was fully integrated. The results show that RFA could be suggested as a non-invasive, reliable and accurate diagnostic method for early assessment of the healing stages.


2014 ◽  
Vol 40 (3) ◽  
pp. 259-262 ◽  
Author(s):  
Luiz Carlos Magno Filho ◽  
Fabiano Ribeiro Cirano ◽  
Fernando Hayashi ◽  
Hsu Shao Feng ◽  
Alexandre Conte ◽  
...  

The primary stability of dental implants is fundamental for osseointegration. Therefore, this study aimed to assess the correlation between insertion torque (IT) and resonance frequency analysis (RFA) of implants placed in mandibles and maxillas of different bone densities. Eighty dental implants were placed in maxillas and mandibles, and IT and the implant stability quotient (ISQ) were measured at the time of implant insertion. Bone density was assessed subjectively by the Lekholm and Zarb index. The type I and II densities were grouped together (group A)as were the type III and IV densities (group B). The IT in group A was higher (Student t test, P = .0013) than in group B (46.27 ± 18.51 Ncm, 33.62 ± 14.74 Ncm, respectively). The implants placed in group A showed higher ISQ (Student t test, P = .0004) than those placed in group B (70.09 ± 7.50, 63.66 ± 8.00, respectively). A significant correlation between IT and the ISQ value was observed for group A (Pearson correlation test; r = 0.35; P = .0213) and for group B (r = 0.37; P = .0224). Within the limitations of this study, it was possible to conclude that there is a correlation between IT and RFA of implants placed in mandibles and maxillas of different bone densities.


2014 ◽  
Vol 40 (4) ◽  
pp. 438-447 ◽  
Author(s):  
Giorgio Deli ◽  
Vincenzo Petrone ◽  
Valeria De Risi ◽  
Drazen Tadic ◽  
Gregory-George Zafiropoulos

Primary stability is an indicator of subsequent osseointegration of dental implants. However, few studies have compared the implant stability among anatomical regions and bone types; thus, not enough data exist regarding the stability of implants placed in regenerated bone (RB). The present study evaluated primary and long-term stability of implants placed in RB and non-regenerated healed bone (HB). A total of 216 screw cylinder implants were placed in 216 patients (98 in HB and 118 in RB, 6 [RB6, N = 68] or 12 [RB12, N = 50] months after tooth extraction). Implant stability was evaluated using resonance frequency analysis (RFA) measured at the time of implant placement (E1), at the time of loading (4 months after placement, E2), and 4 months after loading (E3). Various clinically relevant measurements were obtained, such as implant diameter, length, and location, as well as bone quality. At E1, implant location, bone quality, and experimental group significantly affected implant stability (all at P < .05). At E2, implant location, diameter, length, and experimental group significantly affected implant stability (all at P < .05). At E3, bone quality, implant diameter, length, and experimental group significantly affected implant stability (all at P < .01). Stability for the RB12 group was significantly higher than all other corresponding values; further, the values did not change significantly over time. For the HB and RB6 groups, stability was significantly higher at E2 than at E1 (P < .001) and was no different between E2 and E3. Implant location, length, and experimental group were associated with these differences (all at P < .05). Compared with HB and RB6, higher implant stability may be achieved in regenerated bone 12 months post-extraction (RB12). This stability was achieved at E1 and maintained for at least 8 months. Variables such as implant length, diameter, and bone quality affected the stability differently over time. Implant stability varied in different anatomic regions and with regard to different healing processes in the bone.


2015 ◽  
Vol 41 (6) ◽  
pp. e281-e286 ◽  
Author(s):  
Sergio Alexandre Gehrke ◽  
Ulisses Tavares da Silva ◽  
Massimo Del Fabbro

The purpose of this study was to assess implant stability in relation to implant design (conical vs. semiconical and wide-pitch vs narrow-pitch) using resonance frequency analysis. Twenty patients with bilateral edentulous maxillary premolar region were selected. In one hemiarch, conical implants with wide pitch (group 1) were installed; in the other hemiarch, semiconical implants with narrow pitch were installed (group 2). The implant allocation was randomized. The implant stability quotient (ISQ) was measured by resonance frequency analysis immediately following implant placement to assess primary stability (time 1) and at 90 days after placement (time 2). In group 1, the mean and standard deviation ISQ for time 1 was 65.8 ± 6.22 (95% confidence interval [CI], 55 to 80), and for time 2, it was 68.0 ± 5.52 (95% CI, 57 to 77). In group 2, the mean and standard deviation ISQ was 63.6 ± 5.95 (95% CI, 52 to 78) for time 1 and 67.0 ± 5.71 (95% CI, 58 to 78) for time 2. The statistical analysis demonstrated significant difference in the ISQ values between groups at time 1 (P = .007) and no statistical difference at time 2 (P = .54). The greater primary stability of conical implants with wide pitch compared with semiconical implants with narrow pitch might suggest a preference for the former in case of the adoption of immediate or early loading protocols.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Samuel Jeu ◽  
Etienne Guillaud ◽  
Laurent Hauret ◽  
Jean-Christophe Coutant ◽  
Bruno Ella

Objective. The aim of this study was to assess the influence of the interimplant distance on the implant primary stability (ISQ) by Resonance Frequency Analysis (RFA). Method. Forty-five implants were placed in the mandible of human cadavers and 108 in artificial bone substrates in the form of polyurethane foam blocks. Primary implant stability was successively measured first by RFA immediately after the placement of the first implant (A) and then after two other implants (B and C) proximal and distal to the first implant. The interimplant distances were defined from 1 to 6 mm and the three primary stability values measured were compared. Results. On the mandibles, no correlation was observed between the interimplant distances and primary stability. On the polyurethane foam block, the primary stability of implant A increased significantly (p<0.001) after the placement of implant B but remained constant after placement of implant C. Conclusion. Reducing the interimplant distance does not affect the primary stability on dry bone or artificial substrate.


2010 ◽  
Vol 19 (6) ◽  
pp. 509-519 ◽  
Author(s):  
Hsun-Liang Chan ◽  
Karim El-Kholy ◽  
Jia-Hui Fu ◽  
Pablo Galindo-Moreno ◽  
Hom-Lay Wang

Sign in / Sign up

Export Citation Format

Share Document