Three-dimensional thermo-mechanical analysis of continuous casting and comparison with two-dimensional models

2018 ◽  
Vol 53 (6) ◽  
pp. 421-434
Author(s):  
Reza Vaghefi ◽  
MR Hematiyan ◽  
Ali Nayebi

In this study, a three-dimensional thermo-elasto-plastic model is developed for simulating a continuous casting process. The obtained results are compared with those from different two-dimensional analyses, which are based on plane stress, plane strain, and generalized plane strain assumptions. All analyses are carried out using the meshless local Petrov–Galerkin method. The effective heat capacity method is employed to simulate the phase change process. The von Mises yield criterion and elastic–perfectly-plastic model are used to simulate the stress state during the casting process; while, material parameters are assumed to be temperature-dependent. Based on the three-dimensional and two-dimensional models, numerical results are provided to determine the stress, displacement, and temperature fields induced in the cast material. It is observed that the present meshless local Petrov–Galerkin method is accurate in three-dimensional thermo-mechanical analysis of highly nonlinear phase change problems. Reasonable agreements are observed between the results obtained from the three-dimensional analysis with those retrieved by the generalized plane strain assumption. However, it is observed that the results obtained under plane stress/strain conditions have some significant differences with the results obtained from three-dimensional modeling of continuous casting.

2004 ◽  
Vol 127 (4) ◽  
pp. 782-787 ◽  
Author(s):  
B. Zettl ◽  
W. Szyszkowski ◽  
W. J. Zhang

This paper discusses the finite element method (FEM) based modeling of the behavior of typical right circular flexure hinges used in planar compliant mechanisms. Such hinges have traditionally been approximated either by simple beams in the analytical approach or very often by two-dimensional (2D) plane stress elements when using the FEM. The three-dimensional (3D) analysis presented examines these approximations, focusing on systematic errors due to 2D modeling. It is shown that the 2D models provide only the lower (assuming the plane stress state) or the upper (assuming the plane strain state) limits of the hinge’s stiffness. The error of modeling a particular hinge by 2D elements (with either the plane stress or the plane strain assumptions) depends mainly on its depth-to-height ratio and may reach up to about 12%. However, this error becomes negligible for hinges with sufficiently high or sufficiently low depth-to-height ratios, in which either the plane strain or stress states dominate respectively. It is also shown that the computationally intensive 3D elements can be replaced, without sacrificing accuracy, by numerically efficient 2D elements if the material properties are appropriately manipulated.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1721
Author(s):  
Markus Lazar

The displacement and stress function fields of straight dislocations and lines forces are derived based on three-dimensional anisotropic incompatible elasticity. Using the two-dimensional anisotropic Green tensor of generalized plane strain, a Burgers-like formula for straight dislocations and body forces is derived and its relation to the solution of the displacement and stress function fields in the integral formalism is given. Moreover, the stress functions of a point force are calculated and the relation to the potential of a Dirac string is pointed out.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Enyang Wang ◽  
Wenxing Zhou ◽  
Guowu Shen ◽  
Daming Duan

Several well-known equations for estimating the crack length in the single-edge notched bending (SE(B)) specimens from the normalized crack mouth opening displacement (CMOD) compliance are evaluated based on two-dimensional (2D) and three-dimensional (3D) finite element analyses (FEAs). Two-dimensional FEAs are first carried out to verify the reported accuracy and applicable ranges for each equation based on the plane strain models with six different crack lengths. Three-dimensional FEAs are then carried out to estimate the errors of prediction of equations that evaluate the crack length from the plane stress- and plane strain-based CMOD compliances. Both plane-sided and side-grooved models are included in 3D FEAs and have seven different thickness-to-width ratios. The error of prediction of a given equation is largely impacted by the thickness-to-width ratio, the crack length, the presence of side grooves, and the use of the plane stress- or plane strain-normalized CMOD compliance. Based on the errors of prediction, the relevance of the actual state of stress in the ligament of the SE(B) specimens to the plane strain condition or the plane stress condition is inferred. Knowledge of the relevance of the plane stress condition or the plane strain condition can be used to select the corresponding CMOD compliance in crack length-CMOD equations, and, therefore, the corresponding predictive accuracy can be improved.


2011 ◽  
Vol 693 ◽  
pp. 235-244 ◽  
Author(s):  
John F. Grandfield ◽  
Sébastien Dablement ◽  
Hallvard Gustav Fjær ◽  
Dag Mortensen ◽  
Michael Lee ◽  
...  

Wire rod is produced by hot-rolling a bar of metal coming from a wheel/belt continuous casting process. This kind of process, e.g. Properzi, is an elaborate process in which the molten metal is poured in a cooled rotating mould formed by the groove of a wheel and closed by a belt. In order to better understand the heat transfer phenomenon and solidified bar characteristics, depending on process parameters a three dimensional thermo-mechanical model has been developed. The model, based on the finite-element method, calculates the heat transfer coefficient of the air gap at the metal-mould interface as a function of the size of the gap determined by the bar contraction and wheel and belt thermal deformations. The air gap formation due to metal shrinkage and mould deformation is the main factor which determines the heat extraction. Wheel temperature measurements with thermocouple and belt temperature measurements with an infrared system were carried out to verify model results. Attempts were also made to measure a liquid pool profile using doping with copper rich alloy. The model shows the effect of the casting temperature and the rotation speed on the air gap formation and resulting temperature and stress fields. The model can be applied to issues such as maximising wheel and belt life and minimising solidification defects.


2011 ◽  
Vol 137 ◽  
pp. 1-6
Author(s):  
Qing Li ◽  
Xiao Xiang Yang

In this paper, the micromechanical finite element method based on Representative Volume Element has been applied to study and analyze the macro mechanical properties of the carbon black filled rubber composites by using two-dimensional plane stress simulations and three-dimensional axisymmetric simulations under uniaxial compression respectively. The dependence of the macroscopic stress-strain behavior and the effective elastic modulus of the composites, on particle shape, particle area/volume fraction and particle stiffness has been investigated and discussed. Additionally, the simulation results of the two-dimensional plane stress model and the three-dimensional axisymmetric model are evaluated and compared with the experimental data, which shows that the two-dimensional plane stress simulations generate poor predictions on the mechanical behavior of the carbon black particle reinforced rubber composites, while the three-dimensional axisymmetric simulations appear to give a better prediction.


1991 ◽  
Vol 113 (4) ◽  
pp. 350-354 ◽  
Author(s):  
H. S. Morgan

Thermal stresses in a layered electrical assembly joined with solder are computed with plane strain, generalized plane strain, and three-dimensional (3D) finite element models to assess the accuracy of the two-dimensional (2D) modeling assumptions. Cases in which the solder is treated as an elastic and as a creeping material are considered. Comparison of the various solutions shows that, away from the corners, the generalized plane strain model produces residual stresses that are identical to those computed with the 3D model. Although the generalized plane strain model cannot capture corner stresses, the maximum stresses computed with this 2D model are, for the mesh discretization used, within 12 percent of the corner stresses computed with the 3D model when the solder is modeled elastically and within 5 percent when the solder is modeled as a creeping material. Plane strain is not a valid assumption for predicting thermal stresses, especially when creep of the solder is modeled. The effect of cooling rate on the residual stresses computed with creep models is illustrated.


2009 ◽  
Vol 79-82 ◽  
pp. 1269-1272
Author(s):  
Wei Chen ◽  
Bao Xiang Wang ◽  
Yu Zhu Zhang ◽  
Jin Hong Ma ◽  
Su Juan Yuan

In this paper, a three-dimensional finite element model is developed to simulate and analyze the turbulent flow in the mould of billet continuous casting. The result shows that if the SEN is used in the continuous casting process, there exists a symmetrical stronger vortex in the middle of the mould and a weaker vortex above the nozzle. The casting speed, the depth and diameter of SEN all have significant effect on the fluid flow field and the turbulent kinetic energy on the meniscus, and then have effect on the billet quality. At the given conditions, the optimum set of parameters is: the casting speed 0.035 , the depth of the SEN 0.1 , the diameter of the SEN 0.025 . Online verifying of this model has been developed, which can be proved that it is very useful to control the steel quality and improve the productivity.


2007 ◽  
Vol 353-358 ◽  
pp. 74-77
Author(s):  
Zheng Yang ◽  
Chong Du Cho ◽  
Ting Ya Su ◽  
Chang Boo Kim ◽  
Hyeon Gyu Beom

Based on detailed three-dimensional finite element analyses, elastic stress and strain field of ellipse major axis end in plates with different thickness and ellipse configurations subjected to uniaxial tension have been investigated. The plate thickness and ellipse configuration have obvious effects on the stress concentration factor, which is higher in finite thickness plates than in plane stress and plane strain cases. The out-of-plane stress constraint factor tends the maximum on the mid-plane and approaches to zero on the free plane. Stress concentration factors distribute ununiformly through the plate thickness, the value and location of maximum stress concentration factor depend on the plate thickness and the ellipse configurations. Both stress concentration factor in the middle plane and the maximum stress concentration factor are greater than that under plane stress or plane strain states, so it is unsafe to suppose a tensioned plate with finite thickness as one undergone plane stress or plane strain. For the sharper notch, the influence of three-dimensional stress state on the SCF must be considered.


Sign in / Sign up

Export Citation Format

Share Document