scholarly journals Displacements and Stress Functions of Straight Dislocations and Line Forces in Anisotropic Elasticity: A New Derivation and Its Relation to the Integral Formalism

Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1721
Author(s):  
Markus Lazar

The displacement and stress function fields of straight dislocations and lines forces are derived based on three-dimensional anisotropic incompatible elasticity. Using the two-dimensional anisotropic Green tensor of generalized plane strain, a Burgers-like formula for straight dislocations and body forces is derived and its relation to the solution of the displacement and stress function fields in the integral formalism is given. Moreover, the stress functions of a point force are calculated and the relation to the potential of a Dirac string is pointed out.

2018 ◽  
Vol 53 (6) ◽  
pp. 421-434
Author(s):  
Reza Vaghefi ◽  
MR Hematiyan ◽  
Ali Nayebi

In this study, a three-dimensional thermo-elasto-plastic model is developed for simulating a continuous casting process. The obtained results are compared with those from different two-dimensional analyses, which are based on plane stress, plane strain, and generalized plane strain assumptions. All analyses are carried out using the meshless local Petrov–Galerkin method. The effective heat capacity method is employed to simulate the phase change process. The von Mises yield criterion and elastic–perfectly-plastic model are used to simulate the stress state during the casting process; while, material parameters are assumed to be temperature-dependent. Based on the three-dimensional and two-dimensional models, numerical results are provided to determine the stress, displacement, and temperature fields induced in the cast material. It is observed that the present meshless local Petrov–Galerkin method is accurate in three-dimensional thermo-mechanical analysis of highly nonlinear phase change problems. Reasonable agreements are observed between the results obtained from the three-dimensional analysis with those retrieved by the generalized plane strain assumption. However, it is observed that the results obtained under plane stress/strain conditions have some significant differences with the results obtained from three-dimensional modeling of continuous casting.


2021 ◽  
pp. 095605992110016
Author(s):  
Tamás Baranyai

Graphic statics is undergoing a renaissance, with computerized visual representation becoming both easier and more spectacular as time passes. While methods of the past are revived, little emphasis has been placed on studying the mathematics behind these methods. Due to the considerable advances of our mathematical understanding since the birth of graphic statics, we can learn a lot by examining these old methods from a more modern viewpoint. As such, this work shows the mathematical fabric joining different aspects of graphic statics, like dualities, reciprocal diagrams, and discontinuous stress functions. This is done by introducing a new, three dimensional force diagram (containing the old two dimensional force diagram) depicting the three dimensional equilibrium of planar force systems. A corresponding three dimensional “form diagram” (dual diagram) is introduced, in which forces are treated as linear functionals (dual vectors). It is shown that the polyhedral stress function introduced by Maxwell is in fact a linear combination of these functionals; and the projective dualities connecting these three dimensional diagrams are also explained.


2021 ◽  
Vol 8 (3) ◽  
pp. 333-346
Author(s):  
Charles C. Ike

The Fourier integral method was used in this work to determine the stress fields in a two dimensional (2D) elastic soil mass of semi-infinite extent subject to line and strip loads of uniform intensity acting on the boundary. The two dimensional plane strain problem was formulated using stress-based method. The Fourier integral was used to transform the biharmonic stress compatibility equation to a fourth order linear ordinary differential equation (ODE) in terms of the stress function. The ODE was solved subject to the boundedness condition to obtain the bounded stress function. Cartesian stress components were obtained using the Love stress functions. Application of the stress boundary conditions for the case of line load of uniform intensity and the cases of uniformly distributed load on a strip of finite width gave the respective unknown constants of the Love stress functions; and hence the complete determination of the Cartesian stress components for the two cases considered. Inversion of the Fourier integral expressions obtained for the normal and shear stresses in the Fourier parameter gave respective expressions for the normal and shear stress fields for line and finite strip loads of finite width in the physical domain variables. The results obtained agreed with the results from previous studies which used displacement based methods.


Author(s):  
T. T. C. Ting

In this chapter we study Stroh's sextic formalism for two-dimensional deformations of an anisotropic elastic body. The Stroh formalism can be traced to the work of Eshelby, Read, and Shockley (1953). We therefore present the latter first. Not all results presented in this chapter are due to Stroh (1958, 1962). Nevertheless we name the sextic formalism after Stroh because he laid the foundations for researchers who followed him. The derivation of Stroh's formalism is rather simple and straightforward. The general solution resembles that obtained by the Lekhnitskii formalism. However, the resemblance between the two formalisms stops there. As we will see in the rest of the book, the Stroh formalism is indeed mathematically elegant and technically powerful in solving two-dimensional anisotropic elasticity problems. The possibility of extending the formalism to three-dimensional deformations is explored in Chapter 15.


1991 ◽  
Vol 113 (4) ◽  
pp. 350-354 ◽  
Author(s):  
H. S. Morgan

Thermal stresses in a layered electrical assembly joined with solder are computed with plane strain, generalized plane strain, and three-dimensional (3D) finite element models to assess the accuracy of the two-dimensional (2D) modeling assumptions. Cases in which the solder is treated as an elastic and as a creeping material are considered. Comparison of the various solutions shows that, away from the corners, the generalized plane strain model produces residual stresses that are identical to those computed with the 3D model. Although the generalized plane strain model cannot capture corner stresses, the maximum stresses computed with this 2D model are, for the mesh discretization used, within 12 percent of the corner stresses computed with the 3D model when the solder is modeled elastically and within 5 percent when the solder is modeled as a creeping material. Plane strain is not a valid assumption for predicting thermal stresses, especially when creep of the solder is modeled. The effect of cooling rate on the residual stresses computed with creep models is illustrated.


Author(s):  
R. T. Shield

Three-dimensional stress distributions in hexagonal aeolotropic materials have recently been considered by Elliott(1, 2), who obtained a general solution of the elastic equations of equilibrium in terms of two ‘harmonic’ functions, or, in the case of axially symmetric stress distributions, in terms of a single stress function. These stress functions are analogous to the stress functions employed to define stress systems in isotropic materials, and in the present note further problems in hexagonal aeolotropic media are solved, the method in each case being similar to that used for the corresponding problem in isotropic materials. Because of this similarity detailed explanations are unnecessary and only the essential steps in the working are given below.


1996 ◽  
Vol 63 (2) ◽  
pp. 295-300 ◽  
Author(s):  
R. C. Picu ◽  
V. Gupta

Stress singularities at grain triple junctions are evaluated for various asymmetric grain boundary configurations and random orientations of cubic and orthotropic grains. The analysis is limited to elastic plane-strain deformation and carried out using the Eshelby-Stroh formalism for anisotropic elasticity. For both the cubic and orthotropic grains, the most singular configuration corresponds to the fully symmetric case with grain boundaries 120 deg apart, and with symmetric orientations of the material axes. The magnitude of the singularities are obtained for several engineering polycrystals.


2012 ◽  
Vol 49 (10) ◽  
pp. 1134-1146 ◽  
Author(s):  
Pio-Go Hsieh ◽  
Chang-Yu Ou ◽  
Chiang Shih

Previous studies have shown that installation of cross walls in deep excavations can reduce lateral wall deflection to a very small amount. To predict the lateral wall deflection for excavations with cross walls, it is necessary to perform a three-dimensional numerical analysis because the deflection behavior of the diaphragm wall with cross walls is by nature three dimensional. However for the analysis and design of excavations, two-dimensional plane strain analysis is mostly used in practice . For this reason, based on the deflection behavior of continuous beams and the superimposition principle, an equivalent beam model suitable for two-dimensional plane strain analysis was derived to predict lateral wall deflection for excavations with cross walls. Three excavation cases were employed to verify the proposed model. Case studies confirm the proposed equivalent beam model for excavations with cross walls installed from near the ground surface down to at least more than half the embedded depth of the diaphragm wall. For the case with a limited cross-wall depth, the proposed model yields a conservative predicted lateral wall deflection.


1992 ◽  
Vol 114 (3) ◽  
pp. 329-335 ◽  
Author(s):  
N. Kim ◽  
S. M. Lee ◽  
W. Shin ◽  
R. Shivpuri

This paper presents details of a quasi three-dimensional finite element formulation for shape rolling, TASKS. This formulation uses a mix of two-dimensional finite element and slab element techniques to solve a generalized plane strain problem. Consequently, quasi steady state metal forming problems such as rolling of shapes can be analyzed with minimal computational effort. To verify the capability of the formulation square-to-round single pass rolling is simulated by TASKS and results compared with a fully three-dimensional simulation reported in literature. The results indicate reasonable agreement in roll forces, torques, and effective strain distributions during rolling. However, due to the generalized plane strain assumptions, nonhomogenieties in the rolling direction cannot be simulated. The large computational economy realized via TASKS gives this formulation the power to analyze roll pass designs with reasonable computational resources.


The problem of the equilibrium of an elastic solid under given applied forces is one of great difficulty and one which has attracted the attention of most of the great applied Mathematicians since the time of Euler. Unlike the kindred problems of hydrodynamics and electrostatics, it seems to be a branch of mathematical physics in which knowledge comes by the patient accumulation of special solutions rather than by the establishment of great general propositions. Nevertheless, the many and varied applications of this subject to practical affairs make it very desirable that these special solutions should be investigated, not only because of their intrinsic importance but also for the light which they often throw on the general problem. One of the most powerful methods of the mathematical physicist in the face of recalcitrant differential equations is to simplify his problem by reducing it to two dimensions. This simplification can only imperfectly be reproduced in the Nature of our three-dimensional world, but, in default of more general methods, it provides an invaluable weapon. It was shown by Airy that in the two-dimensional case the, stresses may be derived by partial differentiations from a single stress function, and it was shown later that, in the absence of body forces, this stress function satisfies the linear partial differential equation of the fourth order ∇ 4 X = 0, where ∇ 4 = ∇ 2 . ∇ 2 , and ∇ 2 is the two-dimensional Laplacian ∂ 2 /∂ x 2 + ∂ 2 /∂ y 2 .


Sign in / Sign up

Export Citation Format

Share Document