Statistical analysis of yarn to metal frictional coefficient of cotton spun yarn using Taguchi design of experiment

2018 ◽  
Vol 53 (7) ◽  
pp. 485-493 ◽  
Author(s):  
Amir Shahzad ◽  
Naseer Ahmad ◽  
Zulfiqar Ali ◽  
Ali Afzal ◽  
Muhammad Bilal Qadir ◽  
...  

Yarn’s surface to metal friction is an important consideration in the subsequent process of knitting and weaving as it influences mainly the ends down rate, fly generation, process efficiency, wear and tear of machine parts, and production rate of the process. These frictional properties are measured in terms of the coefficient of friction of yarn. The effect of cotton type, yarn twist, yarn linear density, process type, and finishing treatment was studied on the surface to the metal friction coefficient of cotton spun yarn using Taguchi experimental design. The experiments were conducted with Pakistani and Indian cotton using combed and carded ring spinning processes. Using Taguchi design of experiment, a total of 36 samples of cotton ring-spun yarns were produced. The coefficient of friction between the yarn’s surface and metal’s surface is measured in compliance with ASTM D3108. The outcome of the Taguchi model to predict the coefficient of friction of yarns with a predefined combination of constituting parameters was further confirmed with nine yarn samples. The frictional characteristics of yarns are found to be influenced by all factors. In addition to the application of wax, the longer fiber length, lower trash count, lower short fiber index, and the optimum level of twist are found advantageous to reduce the yarn coefficient of friction.

Fibers ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 29
Author(s):  
Jopeth Ramis ◽  
Bryan Pajarito ◽  
Crisneil Natividad ◽  
Mark Jared Van Ocampo ◽  
Crizaldy Tugade ◽  
...  

We report the synthesis of presumably a “nanoridge” from the electrospinning of a hydrophilic polymer–protein blend. The material exhibits vertical elevation from the substrate, distinct from the morphologies seen in electrospinning. It is hypothesized that the formation of the nanostructured ridges is due to the migration of the charged protein to the apex through a highly polarized electric field in electrospinning conditions. In this study, we assessed the polyvinyl alcohol–egg albumin (PVA–EA) system in a solvent comprising of water, formic and acetic acid, together with the tip-to-collector distance (TCD) and solution flowrate. To quantify the factor effects in the surface properties of the material, a Taguchi design of experiment was used. The ridge heights observed ranged from 84.8–639.9 nm, and the material height is predominantly affected by the PVA–EA ratio and solution flow rate. The root mean square roughness was influenced by the TCD and flow rate, which has values ranging from 11.37–57.56 nm. In evaluating the sharpness of the ridge, we used the radius of curvature, where the TCD highly affects the apex sharpness. The work offers not just a likely new class of morphology, but a new perspective on the surface characterization of an electrospun material which could affect the performance of such a use in biological and physical systems.


2019 ◽  
Vol 70 (03) ◽  
pp. 211-215
Author(s):  
MOHSIN MUHAMMAD ◽  
NAI-WEN LI ◽  
SOHAIL ANJUM MUHAMMAD ◽  
KASHIF MAJEED MUHAMMAD

This research aims to analyze certain effects of yarn characteristics such as: cotton type, yarn quality, yarn spinning technique, yarn twist and linear density and yarn finish on coefficient of friction of yarn by using Taguchi approach. For evaluation of levels and response factors, 72 experiments are performed by using L36 orthogonal design twice for Taguchi approach. The results show that yarns comprising of finer fibers, combed, waxed, Rotor spun, optimum twist and low linear density have lowest coefficient of friction of yarn, which ultimately improves subsequent textile processes and improve product qualities.


MRS Advances ◽  
2017 ◽  
Vol 2 (52) ◽  
pp. 3025-3030 ◽  
Author(s):  
Pawan Tyagi ◽  
Edward Friebe ◽  
Beachrhell Jacques ◽  
Tobias Goulet ◽  
Stanley Travers ◽  
...  

ABSTRACTPhotolithographically patterned thin films often possess unwanted spikes along the side edges. These spikes are a significant issue for the development of spinvalve memory, tunnel junction based molecular devices, and micro-electromechanical systems. Here, we report a very simple, economical, and fast way of creating an optimum photoresist profile for the production of spike-free patterned films. This approach is based on performing a soaking step in the positive-photoresist’s developer solution before the UV exposure. However, the success of this method depends on multiple photolithography factors: photoresist thickness (governed by spin speed), soft baking temperature, soaking time in developer, and exposure time. In this paper, we report our systematic experiments to study the effect of these factors by following the L9 experimental scheme of the Taguchi Design of experiment (TDOE) approach. The L9 experiment scheme effectively accommodated the study of four photolithography factors, each with three levels. After performing photolithography as per L9 TDOE scheme, we sputter deposited 20 nm Tantalum to check the side edge profile of the patterned film by atomic force microscope (AFM). We measured the heights of the spikes along the thin film edges. We utilized spike height as the desired property and chose “smaller the better” criteria for the TDOE analysis. TDOE enabled us to understand the relative importance of the parameters, relationship among the parameters, and impact of the various levels of the parameters on the thin film edge profile. TDOE analysis yielded an optimum combination of levels for the four photolithography factors. The optimum combination of photolithography factors included spin speed 4000 rpm, 100 °C soft baking temperature, 60 sec pre-soaking in the developer solution, and 15 sec UV exposure. We validated the TDOE by AFM and observed spike free patterned films. We also made complete tunnel junction devices by utilizing the optimized photolithography factors for the bottom electrode and obtained excellent tunneling behavior. In summary, this study provides a very simple, economical, and fast photolithography approach for creating optimum photoresist profile for the micro-nano scale devices and electromechanical structures.


1997 ◽  
Vol 67 (3) ◽  
pp. 217-223 ◽  
Author(s):  
A. P. S. Sawhney ◽  
L. B. Kimmel

With the objective of boosting ring spinning productivity, a new tandem spinning system combining air-jet and ring spinning technologies in continuous tandem is investigated. In this “air-plus-ring” tandem spinning system, a drafted roving strand as it emerges from the front roller nip feeds into a single- or dual-jet air nozzle where it is subjected to a vortex of compressed air, producing a pneumatically entangled, false-twisted, partially strengthened strand. This so-called prefabricated, air-bolstered strand continuously feeds into a standard ring spinning zone and is ultimately spun into a novel, single-component yarn. By spinning a few cotton and cotton-blend yarns with the lowest practical twist levels possible on both the tandem and conventional ring spinning systems, we show that a tandem spun yarn can be produced with a relatively lower (true ring) twist level than a pure ring spun yarn. To an extent, the tandem spinning's air-bolstering action reinforces the drafted fibrous strand, contributing to yarn formation and hence character. Since ring spinning productivity is inversely proportional to yarn twist level, the relatively lower twist level required in tandem spinning allows a proportionately higher yarn production speed (in some cases, up to 50% faster than the conventional ring spinning), while maintaining spindle speed at the traditional, optimum level imposed by the limiting traveler speed. Tandem spun yarns, however, are somewhat different from, and generally weaker than, conventional ring spun yarns. This paper briefly describes a prototype of the new tandem spinning system developed on a laboratory Spintester, and shows spinning parameters and properties of a few yarns produced on both the tandem arid conventional ring spinning systems, each employing the traditional (maximum) optimum spindle speed of 10,000 rpm for a given 5.0 cm (2 inch) diameter ring.


2012 ◽  
Vol 233 ◽  
pp. 335-338
Author(s):  
Xue Feng Li ◽  
Hong Bin Liu

In this paper, circulating box cover is taken as the main object of the study with the application of Taguchi design of experiment and Moldflow software. The warpage deformation was obtained under different molding conditions including melt temperature, mold temperature, filling time and packing time. The influencing degree and trend of these parameters was studied by using the rang analysis, and the optimization set of factors was obtained. Experimental results show that the optimization design is effective and the warpage of the product reduce.


2013 ◽  
Vol 750-752 ◽  
pp. 2084-2087
Author(s):  
Shenq Yih Luo ◽  
Can Yu Bai

The metal friction materials of copper matrix with and without resin using hot press were investigated to study their hardness, porosities, bending strengths, microstructures, coefficient of frictions, and wear mechanisms. The experiment results show that the hardness and bending strength of the friction materials with increase of amount of copper increase, but the porosity decreases. The resulting coefficient of frictions show more stable and their values are about 0.5~0.6. In addition, the wear mechanism of friction material shows mainly grit abrasive and adhesion, which cause the coefficient of friction to become stable. On the other hand, when the copper matrix containing resin is used, the resulting porosity of friction materials becomes higher and the bending strength decreases. This shows that the wear mechanisms of grit abrasive, roughness, and adhesion cause the coefficient of friction to produce a higher value.


Sign in / Sign up

Export Citation Format

Share Document