scholarly journals Investigation of various factors affecting the coefficient of friction of yarn by using Taguchi method

2019 ◽  
Vol 70 (03) ◽  
pp. 211-215
Author(s):  
MOHSIN MUHAMMAD ◽  
NAI-WEN LI ◽  
SOHAIL ANJUM MUHAMMAD ◽  
KASHIF MAJEED MUHAMMAD

This research aims to analyze certain effects of yarn characteristics such as: cotton type, yarn quality, yarn spinning technique, yarn twist and linear density and yarn finish on coefficient of friction of yarn by using Taguchi approach. For evaluation of levels and response factors, 72 experiments are performed by using L36 orthogonal design twice for Taguchi approach. The results show that yarns comprising of finer fibers, combed, waxed, Rotor spun, optimum twist and low linear density have lowest coefficient of friction of yarn, which ultimately improves subsequent textile processes and improve product qualities.

1968 ◽  
Vol 12 (04) ◽  
pp. 302-312
Author(s):  
H. Estrada ◽  
S. R. Ward

The factors affecting the strength of arctic sea ice are identified. Values are selected for the key parameters that determine ice strength. The selected values are based on a literature survey. The forces resulting from interaction of ice and hull are described in terms of the slope of the hull at the waterline and the coefficient of friction. The mechanism for ice failure is described and the effect of this analysis on hull design is discussed.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 844 ◽  
Author(s):  
Wissam H. Alawee ◽  
Yousef A. Almolhem ◽  
Badronnisa Yusuf ◽  
Thamer A. Mohammad ◽  
Hayder A. Dhahad

The flow in a pipe having multiple outlets is considered as an advanced problem in hydraulic engineering; many discrepancies were found in the literature, in addition to the lack of experimental and field studies. The main goal of this study is to simulate the flow in a pipe with multiple outlets in order to examine the existing methodologies for estimation of the friction head losses, and to propose a methodology that is based on experimental data. The main physical model in this study consisted of a water supply tank, a pipe with multiple outlets having a piezometer at each outlet. Different pipe diameters were used in this study, the pipe diameters were 25.4 mm (1 in), 38.1 mm (1.5 in), 50.8 (2 in) and 76.2 mm (3 in). The inlet heads used were 1.7 m and 2.2 m. The data collected from different flow conditions were used to assess the variation in the coefficient of friction and friction head losses along the pipe length. It can be concluded that the spacing between any two successive outlets (S) and area ratio (AR = Area of outlet/Area of the main pipe) are the main factors affecting the friction head losses along the pipe. The ratio of total friction head losses along a pipe with outlets having the same properties (length (L), discharge (Q), diameter (d) and material) to a pipe without outlets and having the same properties is called the G factor. The G factor calculated using selected formulae was overestimated in comparison to the calculated G factor obtained from experimental data. For large values of S/d (spacing between outlets/diameter of main pipe), the difference between coefficient of friction in first segment (f1) and last segment (fn) of the multiple outlet pipe was noted to be minimal.


1992 ◽  
Vol 46 (5) ◽  
pp. 805-814 ◽  
Author(s):  
N. Gurnagul ◽  
M. D. Ouchi ◽  
N. Dunlop-Jones ◽  
D. G. Sparkes ◽  
J. T. Wearing

2019 ◽  
Vol 945 ◽  
pp. 919-925 ◽  
Author(s):  
N. Loginov ◽  
O. Khudyakova ◽  
E. Orlova

In the process of machining, one of the main factors affecting machining tool wear is friction. A decrease in the coefficient of friction between the machining tool and a machined part is a key challenge for researchers. One of the methods to decrease the coefficient of friction and, consequently, to improve the endurance of the tool is the application of wear-resistant coatings. In the current study, modelling of triboprocesses using dummy variables is proposed. Since a peculiarity of modelling of manufacturing processes is a presence of a large number of quality parameters, the influence of all key parameters on the value of the coefficient of friction has been analysed. Also, an adequate model of the dependence of the conditions of the manufacturing process on the coefficient of friction has been developed. The results of the model are important not only for analysis of friction between contact surfaces itself, but also as supplementary and qualitative estimation of different manufacturing processes.


2018 ◽  
Vol 53 (7) ◽  
pp. 485-493 ◽  
Author(s):  
Amir Shahzad ◽  
Naseer Ahmad ◽  
Zulfiqar Ali ◽  
Ali Afzal ◽  
Muhammad Bilal Qadir ◽  
...  

Yarn’s surface to metal friction is an important consideration in the subsequent process of knitting and weaving as it influences mainly the ends down rate, fly generation, process efficiency, wear and tear of machine parts, and production rate of the process. These frictional properties are measured in terms of the coefficient of friction of yarn. The effect of cotton type, yarn twist, yarn linear density, process type, and finishing treatment was studied on the surface to the metal friction coefficient of cotton spun yarn using Taguchi experimental design. The experiments were conducted with Pakistani and Indian cotton using combed and carded ring spinning processes. Using Taguchi design of experiment, a total of 36 samples of cotton ring-spun yarns were produced. The coefficient of friction between the yarn’s surface and metal’s surface is measured in compliance with ASTM D3108. The outcome of the Taguchi model to predict the coefficient of friction of yarns with a predefined combination of constituting parameters was further confirmed with nine yarn samples. The frictional characteristics of yarns are found to be influenced by all factors. In addition to the application of wax, the longer fiber length, lower trash count, lower short fiber index, and the optimum level of twist are found advantageous to reduce the yarn coefficient of friction.


Author(s):  
Goutam Chandra Karar ◽  
Nipu Modak

The experimental investigation of reciprocating motion between the aluminum doped crumb rubber /epoxy composite and the steel ball has been carried out under Reciprocating Friction Tester, TR-282 to study the wear and coefficient of frictions using different normal loads (0.4Kg, 0.7Kgand1Kg), differentfrequencies (10Hz, 25Hz and 40Hz).The wear is a function of normal load, reciprocating frequency, reciprocating duration and the composition of the material. The percentage of aluminum presents in the composite changesbut the other components remain the same.The four types of composites are fabricated by compression molding process having 0%, 10%, 20% and 30% Al. The effect of different parameters such as normal load, reciprocating frequency and percentage of aluminum has been studied. It is observed that the wear and coefficient of friction is influenced by the parameters. The tendency of wear goes on decreasing with the increase of normal load and it is minimum for a composite having 10%aluminum at a normal load of 0.7Kg and then goes on increasing at higher loads for all types of composite due to the adhesive nature of the composite. The coefficient of friction goes on decreasing with increasing normal loads due to the formation of thin film as an effect of heat generation with normal load.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4217
Author(s):  
Üsame Ali Usca ◽  
Mahir Uzun ◽  
Mustafa Kuntoğlu ◽  
Serhat Şap ◽  
Khaled Giasin ◽  
...  

Tribological properties of engineering components are a key issue due to their effect on the operational performance factors such as wear, surface characteristics, service life and in situ behavior. Thus, for better component quality, process parameters have major importance, especially for metal matrix composites (MMCs), which are a special class of materials used in a wide range of engineering applications including but not limited to structural, automotive and aeronautics. This paper deals with the tribological behavior of Cu-B-CrC composites (Cu-main matrix, B-CrC-reinforcement by 0, 2.5, 5 and 7.5 wt.%). The tribological characteristics investigated in this study are the coefficient of friction, wear rate and weight loss. For this purpose, four levels of sliding distance (1000, 1500, 2000 and 2500 m) and four levels of applied load (10, 15, 20 and 25 N) were used. In addition, two levels of sliding velocity (1 and 1.5 m/s), two levels of sintering time (1 and 2 h) and two sintering temperatures (1000 and 1050 °C) were used. Taguchi’s L16 orthogonal array was used to statistically analyze the aforementioned input parameters and to determine their best levels which give the desired values for the analyzed tribological characteristics. The results were analyzed by statistical analysis, optimization and 3D surface plots. Accordingly, it was determined that the most effective factor for wear rate, weight loss and friction coefficients is the contribution rate. According to signal-to-noise ratios, optimum solutions can be sorted as: the highest levels of parameters except for applied load and reinforcement ratio (2500 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 0 wt.%) for wear rate, certain levels of all parameters (1000 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 2.5 wt.%) for weight loss and 1000 m, 15 N, 1 m/s, 1 h, 1000 °C and 0 wt.% for the coefficient of friction. The comprehensive analysis of findings has practical significance and provides valuable information for a composite material from the production phase to the actual working conditions.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1246
Author(s):  
Stefan Valkov ◽  
Dimitar Dechev ◽  
Nikolay Ivanov ◽  
Ruslan Bezdushnyi ◽  
Maria Ormanova ◽  
...  

In this study, we present the results of Young’s modulus and coefficient of friction (COF) of Ti–Ta surface alloys formed by electron-beam surface alloying by a scanning electron beam. Ta films were deposited on the top of Ti substrates, and the specimens were then electron-beam surface alloyed, where the beam power was varied from 750 to 1750 W. The structure of the samples was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). Young’s modulus was studied by a nanoindentation test. The coefficient of friction was studied by a micromechanical wear experiment. It was found that at 750 W, the Ta film remained undissolved on the top of the Ti, and no alloyed zone was observed. By an increase in the beam power to 1250 and 1750 W, a distinguished alloyed zone is formed, where it is much thicker in the case of 1750 W. The structure of the obtained surface alloys is in the form of double-phase α’and β. In both surface alloys formed by a beam power of 1250 and 1750 W, respectively, Young’s modulus decreases about two times due to different reasons: in the case of alloying by 1250 W, the observed drop is attributed to the larger amount of the β phase, while at 1750 W is it due to the weaker binding forces between the atoms. The results obtained for the COF show that the formation of the Ti–Ta surface alloy on the top of Ti substrate leads to a decrease in the coefficient of friction, where the effect is more pronounced in the case of the formation of Ti–Ta surface alloys by a beam power of 1250 W.


Sign in / Sign up

Export Citation Format

Share Document