Optimization of Injection Molding Process Parameters Based on Taguchi Design of Experiment

2012 ◽  
Vol 233 ◽  
pp. 335-338
Author(s):  
Xue Feng Li ◽  
Hong Bin Liu

In this paper, circulating box cover is taken as the main object of the study with the application of Taguchi design of experiment and Moldflow software. The warpage deformation was obtained under different molding conditions including melt temperature, mold temperature, filling time and packing time. The influencing degree and trend of these parameters was studied by using the rang analysis, and the optimization set of factors was obtained. Experimental results show that the optimization design is effective and the warpage of the product reduce.

2010 ◽  
Vol 37-38 ◽  
pp. 570-575 ◽  
Author(s):  
Bao Shou Sun ◽  
Zhe Chen ◽  
Bo Qin Gu ◽  
Xiao Diao Huang

To optimize injection molding warpage, this paper applies the uniform design of experiment method to search for the optimal injection molding processing parameters. The warpage. simulation analysis is accomplished by emplying Moldflow software. The melt temperature, mold temperature, injection time and packing pressure are regarded as processing parameters, and processing parameters are optimized through establishing a regression equation, and the optimization result and influence factors are analyzed. The results show that uniform design of experiment can reduce number of experiments used effectively and the quality of the product is greatly improved by the optimization method.


2012 ◽  
Vol 629 ◽  
pp. 576-580
Author(s):  
Lan Fang Jiang ◽  
Hong Liu ◽  
Chang Guo Hu ◽  
Xian Li Chen ◽  
Zhi Jiang Lei

Due to large planar scale and small lateral scale of plastic drawing board, it was easy to cause warpage problem in injection molding. Optimization of injection molding process was taken to reduce residual stress and improve quality. Combining orthogonal experimental method and software Moldflow, analyzed the effect of mold temperature, melt temperature, hold pressure and injection velocity on warpage deformation. It changed multi-objective optimization to single-objective optimization by weighted method. Through range analysis obtained the influence trend between parameters and comprehensive optimal object. Lastly got the optimal combination of injection molding process parameters.


2017 ◽  
Vol 868 ◽  
pp. 183-191 ◽  
Author(s):  
Yun Wang ◽  
Li Yu Chen ◽  
Xia Ming Yang ◽  
Yan Zhao ◽  
Zhen Ying Xu ◽  
...  

Integrated with orthogonal design method and numerical simulation, injection molding process of the Y-type electrical connectors was conducted to study the influence of process parameters on volume shrinkage rate and maximum warpage, which are regarded as product quality indices. The multi-indices valuation model for the main influencing factors of the process is developed. The influencing sensitivity to the multi-objective of the processing parameters, such as melt temperature, mold temperature, injection time and holding pressure, is determined by range analysis. Through analyzing the diagrams of influential factors, the optimized process parameter diagram is obtained and verified by simulation. The optimum parameters minimizing the warpage defect and shrinkage are: melt temperature (528K), mold temperature (338K), filling time (0.6s), holding pressure (100%) and holding time (10s). The results show that it is effective to balance the impact of process parameters on the shrinkage and warpage. The work can provide optimal design and process reference for the quality control and assembly precision.


2011 ◽  
Vol 143-144 ◽  
pp. 494-498
Author(s):  
Ke Ming Zi ◽  
Li Heng Chen

With finite element analysis software Moldflow, numerical simulation and studies about FM truck roof handle were conducted on gas-assisted injection molding process. The influences of melt pre-injection shot, gas pressure, delay time and melt temperature were observed by using multi-factor orthogonal experimental method. According to the analysis of the factors' impact on evaluation index, the optimized parameter combination is obtained. Therefore the optimization design of technological parameters is done. The results show that during the gas-assisted injection molding, optimum pre-injection shot is 94%,gas pressure is 15MPa,delay time is 0.5s,melt temperature is 240 oC. This study provided a more practical approach for the gas-assisted injection molding process optimization.


2013 ◽  
Vol 345 ◽  
pp. 586-590 ◽  
Author(s):  
Xiao Hong Tan ◽  
Lei Gang Wang ◽  
Wen Shen Wang

To obtain optimal injection process parameters, GA was used to optimize BP network structure based on Moldflow simulation results. The BP network was set up which considering the relationship between volume shrinkage of plastic parts and injection parameters, such as mold temperature, melt temperature, holding pressure and holding time etc. And the optimal process parameters are obtained, which is agreed with actual results. Using BP network to predict injection parameters impact on parts quality can effectively reduce the difficulty and workload of other modeling methods. This method can be extended to other quality prediction in the process of plastic parts.Keyword: Genetic algorithm (GA);Neural network algorithm (BP);Injection molding process optimization;The axial deformation


2018 ◽  
Vol 25 (3) ◽  
pp. 593-601 ◽  
Author(s):  
Jixiang Zhang ◽  
Xiaoyi Yin ◽  
Fengzhi Liu ◽  
Pan Yang

Abstract Aiming at the problem that a thin-walled plastic part easily produces warpage, an orthogonal experimental method was used for multiparameter coupling analysis, with mold structure parameters and injection molding process parameters considered synthetically. The plastic part deformation under different experiment schemes was comparatively studied, and the key factors affecting the plastic part warpage were analyzed. Then the injection molding process was optimized. The results showed that the important order of the influence factors for the plastic part warpage was packing pressure, packing time, cooling plan, mold temperature, and melt temperature. Among them, packing pressure was the most significant factor. The optimal injection molding process schemes reducing the plastic part warpage were melt temperature (260°C), mold temperature (60°C), packing pressure (150 MPa), packing time (2 s), and cooling plan 3. In this situation, the forming plate flatness was better.


2011 ◽  
Vol 284-286 ◽  
pp. 550-556 ◽  
Author(s):  
Ming Hsiung Ho ◽  
Pin Ning Wang ◽  
Chin Ping Fung

This study investigates the effect of various injection molding process parameters and fiber amount on buckling properties of Polybutylene Terephthalate (PBT)/short glass fiber composite. The buckling specimens were prepared under injection molding process. These forming parameters about filling time, melt temperature and mold temperature that govern injection molding process are discussed. The buckling properties of neat PBT, 15 wt%, and 30 wt% are obtained using two ends fixed fixture and computerized closed-loop server-hydraulic material testing system. The fracture surfaces are observed by scanning electron microscopy (SEM). The global buckling forces are raised when increased the fiber weight percentage of PBT. Also, the fracture mechanisms in PBT and short glass fiber matrix are fiber pullout in skin area and fiber broken at core area. It is found that the addition of short glass fiber can significantly strengthen neat PBT.


2013 ◽  
Vol 561 ◽  
pp. 390-394
Author(s):  
Hui Min Zhang ◽  
Jia Teng Niu ◽  
Lei Lei Dong

The rubber melt flow processes was studied through the numerical simulation methods. According to the two important factors of the melt temperature and mold temperature, the paper designs three plans, analyzed rubber melt flow front temperature, volume curing rate and volume curing rate at the end of filling in different melt temperature and mold temperature and found the best solution, so that curing time was shorten and production efficiency was improved under the precondition of filling smoothly mold and ensuring quality of products.


2013 ◽  
Vol 561 ◽  
pp. 239-243 ◽  
Author(s):  
Yong Nie ◽  
Hui Min Zhang ◽  
Jia Teng Niu

This article is using Moldflow analysis and orthogonal experimental method during the whole experiment. The injection molding process of motor cover is simulated under various technological conditions.After forming the maximum amount of warpage of plastic parts for evaluation.According to the range analysis of the comprehensive goal, the extent of the overall influence to the processing parameters, such as gate location, melt temperature, mold temperature and holding pressure is clarified.Through analyzing the diagrams of influential factors resulted from the simulation result,the optimized process parameter scheme is obtained and further verified by simulation.


Author(s):  
Catalin Fetecau ◽  
Ion Postolache ◽  
Felicia Stan

The research presented in this paper involves numerical and experimental efforts to investigate the relative thin-wall injection molding process in order to obtain high dimensional quality complex parts. To better understand the effects of various processing parameters (the filling time, injection pressure, the melting temperature, the mold temperature) on the injection molding of a thin-wall complex part, the molding experiments are regenerated into the computer model using the Moldflow Plastics Insight (MPI) 6.1 software. The computer visualization of the filling phase allows accurate prediction of the location of the flow front, welding lines and air traps. Furthermore, in order to optimize the injection molding process, the effects of the geometry of the runner system on the filling and packing phases are also investigated. It is shown that computational modeling could be used to help the process and mold designer to produce accurate parts.


Sign in / Sign up

Export Citation Format

Share Document