scholarly journals Using TurbSim stochastic simulator to improve accuracy of computational modelling of wind in the built environment

2018 ◽  
Vol 43 (2) ◽  
pp. 147-161
Author(s):  
Amir Bashirzadeh Tabrizi ◽  
Binxin Wu ◽  
Jonathan Whale ◽  
Maryam Shahabi Lotfabadi

Small wind turbines are often sited in more complex environments than in open terrain. These sites include locations near buildings, trees and other obstacles, and in such situations, the wind is normally highly three-dimensional, turbulent, unstable and weak. There is a need to understand the turbulent flow conditions for a small wind turbine in the built environment. This knowledge is crucial for input into the design process of a small wind turbine to accurately predict blade fatigue loads and lifetime and to ensure that it operates safely with a performance that is optimized for the environment. Computational fluid dynamics is a useful method to provide predictions of local wind flow patterns and to investigate turbulent flow conditions at small wind turbine sites, in a manner that requires less time and investment than actual measurements. This article presents the results of combining a computational fluid dynamics package (ANSYS CFX software) with a stochastic simulator (TurbSim) as an approach to investigate the turbulent flow conditions on the rooftop of a building where small wind turbines are sited. The findings of this article suggest that the combination of a computational fluid dynamics package with the TurbSim stochastic simulator is a promising tool to assess turbulent flow conditions for small wind turbines on the roof of buildings. In particular, in the prevailing wind direction, the results show a significant gain in accuracy in using TurbSim to generate wind speed and turbulence kinetic energy profiles for the inlet of the computational fluid dynamics domain rather than using a logarithmic wind-speed profile and a pre-set value of turbulence intensity in the computational fluid dynamics code. The results also show that small wind turbine installers should erect turbines in the middle of the roof of the building and avoid the edges of the roof as well as areas on the roof close to the windward and leeward walls of the building in the prevailing wind direction.

2018 ◽  
Vol 207 ◽  
pp. 02004
Author(s):  
M. Rajaram Narayanan ◽  
S. Nallusamy ◽  
M. Ragesh Sathiyan

In the global scenario, wind turbines and their aerodynamics are always subjected to constant research for increasing their efficiency which converts the abundant wind energy into usable electrical energy. In this research, an attempt is made to increase the efficiency through the changes in surface topology of wind turbines through computational fluid dynamics. Dimples on the other hand are very efficient in reducing air drag as is it evident from the reduction of drag and increase in lift in golf balls. The predominant factors influencing the efficiency of the wind turbines are lift and drag which are to be maximized and minimized respectively. In this research, surface of turbine blades are integrated with dimples of various sizes and arrangements and are analyzed using computational fluid dynamics to obtain an optimum combination. The analysis result shows that there is an increase in power with about 15% increase in efficiency. Hence, integration of dimples on the surface of wind turbine blades has helped in increasing the overall efficiency of the wind turbine.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Alexandrina Untaroiu ◽  
Houston G. Wood ◽  
Paul E. Allaire ◽  
Robert J. Ribando

Vertical axis wind turbines have always been a controversial technology; claims regarding their benefits and drawbacks have been debated since the initial patent in 1931. Despite this contention, very little systematic vertical axis wind turbine research has been accomplished. Experimental assessments remain prohibitively expensive, while analytical analyses are limited by the complexity of the system. Numerical methods can address both concerns, but inadequate computing power hampered this field. Instead, approximating models were developed which provided some basis for study; but all these exhibited high error margins when compared with actual turbine performance data and were only useful in some operating regimes. Modern computers are capable of more accurate computational fluid dynamics analysis, but most research has focused on horizontal axis configurations or modeling of single blades rather than full geometries. In order to address this research gap, a systematic review of vertical axis wind-power turbine (VAWT) was undertaken, starting with establishment of a methodology for vertical axis wind turbine simulation that is presented in this paper. Replicating the experimental prototype, both 2D and 3D models of a three-bladed vertical axis wind turbine were generated. Full transient computational fluid dynamics (CFD) simulations using mesh deformation capability available in ansys-CFX were run from turbine start-up to operating speed and compared with the experimental data in order to validate the technique. A circular inner domain, containing the blades and the rotor, was allowed to undergo mesh deformation with a rotational velocity that varied with torque generated by the incoming wind. Results have demonstrated that a transient CFD simulation using a two-dimensional computational model can accurately predict vertical axis wind turbine operating speed within 12% error, with the caveat that intermediate turbine performance is not accurately captured.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Prasanna Hariharan ◽  
Matthew Giarra ◽  
Varun Reddy ◽  
Steven W. Day ◽  
Keefe B. Manning ◽  
...  

This study is part of a FDA-sponsored project to evaluate the use and limitations of computational fluid dynamics (CFD) in assessing blood flow parameters related to medical device safety. In an interlaboratory study, fluid velocities and pressures were measured in a nozzle model to provide experimental validation for a companion round-robin CFD study. The simple benchmark nozzle model, which mimicked the flow fields in several medical devices, consisted of a gradual flow constriction, a narrow throat region, and a sudden expansion region where a fluid jet exited the center of the nozzle with recirculation zones near the model walls. Measurements of mean velocity and turbulent flow quantities were made in the benchmark device at three independent laboratories using particle image velocimetry (PIV). Flow measurements were performed over a range of nozzle throat Reynolds numbers (Rethroat) from 500 to 6500, covering the laminar, transitional, and turbulent flow regimes. A standard operating procedure was developed for performing experiments under controlled temperature and flow conditions and for minimizing systematic errors during PIV image acquisition and processing. For laminar (Rethroat=500) and turbulent flow conditions (Rethroat≥3500), the velocities measured by the three laboratories were similar with an interlaboratory uncertainty of ∼10% at most of the locations. However, for the transitional flow case (Rethroat=2000), the uncertainty in the size and the velocity of the jet at the nozzle exit increased to ∼60% and was very sensitive to the flow conditions. An error analysis showed that by minimizing the variability in the experimental parameters such as flow rate and fluid viscosity to less than 5% and by matching the inlet turbulence level between the laboratories, the uncertainties in the velocities of the transitional flow case could be reduced to ∼15%. The experimental procedure and flow results from this interlaboratory study (available at http://fdacfd.nci.nih.gov) will be useful in validating CFD simulations of the benchmark nozzle model and in performing PIV studies on other medical device models.


2021 ◽  
Vol 1 (1) ◽  
pp. 23-28
Author(s):  
D. Daskalaki ◽  
J. Fantidis ◽  
P. Kogias

The evaluation of a small 3kW wind turbine through the net metering scheme is studied in this article. 14 near to sea locations in Greece examined with the help of the RetScreen expert software. The simulations based on electrical, financial and environmental criteria. Siros with average wind speed of 6.93 m/s is the most attractive area while Iraklion is the least attractive location. According to the results the simulated project is already economically sound and a small wind turbine in the Greek islands will become a progressively an even more financially source of electricity in Greece. Finally yet importantly is the fact that the use of small wind turbines has as a result that significant amount of Greenhouse gases do not reradiate into the topical atmosphere.


2018 ◽  
Vol 8 (11) ◽  
pp. 2314 ◽  
Author(s):  
Yin Zhang ◽  
Bumsuk Kim

Accurate prediction of the time-dependent system dynamic responses of floating offshore wind turbines (FOWTs) under aero-hydro-coupled conditions is a challenge. This paper presents a numerical modeling tool using commercial computational fluid dynamics software, STAR-CCM+(V12.02.010), to perform a fully coupled dynamic analysis of the DeepCwind semi-submersible floating platform with the National Renewable Engineering Lab (NREL) 5-MW baseline wind turbine model under combined wind–wave excitation environment conditions. Free-decay tests for rigid-body degrees of freedom (DOF) in still water and hydrodynamic tests for a regular wave are performed to validate the numerical model by inputting gross system parameters supported in the Offshore Code Comparison, Collaboration, Continued, with Correlations (OC5) project. A full-configuration FOWT simulation, with the simultaneous motion of the rotating blade due to 6-DOF platform dynamics, was performed. A relatively heavy load on the hub and blade was observed for the FOWT compared with the onshore wind turbine, leading to a 7.8% increase in the thrust curve; a 10% decrease in the power curve was also observed for the floating-type turbines, which could be attributed to the smaller project area and relative wind speed required for the rotor to receive wind power when the platform pitches. Finally, the tower-blade interference effects, blade-tip vortices, turbulent wakes, and shedding vortices in the fluid domain with relatively complex unsteady flow conditions were observed and investigated in detail.


Author(s):  
Keaton Mullenix ◽  
D. Keith Walters ◽  
Arturo Villegas ◽  
F. Javier Diez

Abstract Wind turbines are critically important in the quest to decrease global dependence on non-renewable energy sources. With the space to add 5M wind turbines, the United States is at the forefront of this transition. Horizontal axis wind turbines (HAWTs) have been studied numerically and experimentally at length. The vast majority of computational fluid dynamics (CFD) studies of HAWTs documented in the open literature have been carried out using two-dimensional simulations. Currently, the available three-dimensional simulations do not provide a comprehensive investigation of the accuracy of different options for modeling of fluid turbulence. In this paper four sets of CFD simulations are carried out using four different turbulence models that are commonly used for engineering level CFD analysis: SST-k-ω, Transition k-kL-ω, Standard k-ε, and Monotonically Integrated Large Eddy Simulation (MILES). These models were compared with experimental performance and coefficient of power results for a small-scale industrial wind turbine with inverse tip speed ratios (λ−1) in the range 0.072–0.144. They were further investigated to highlight the similarities and differences for the prediction of coefficient of pressure and skin friction coefficient. The results showed that no singular model, of the four investigated, was able to consistently predict the power performance with a high degree of accuracy when compared to the experimental results. The models also exhibited both similarities and key differences for the other aspects of flow physics. The results presented in this study highlight the critical role that turbulence modeling plays in the overall accuracy of a CFD simulation, and indicate that end users should be well aware of the uncertainties that arise in CFD results for wind turbine analysis, even when other sources of numerical error have been carefully minimized.


Author(s):  
Abolfazl Pourrajabian ◽  
Reza Ebrahimi ◽  
Masoud Mirzaei

A numerical scheme for determination of wake propagation in downstream of a wind turbine was developed by Computational Fluid Dynamics (CFD) and analytical correlation. A 3bladed horizontal axis wind turbine was selected and airflow around the wind turbine was analyzed. The flow was assumed steady state and a pressure based approach was adopted to solve the governing equations in an unstructured grid distribution using parallel processing. In conjunction with governing equations, the kω – SST model was used for turbulence modeling. The formation of the wake behind the wind turbine was estimated and an appropriate equation was derived for velocity magnitude at the downstream of the wind turbine. Moreover, the suitable distances between wind turbines in wind and crosswind directions were estimated. Results show a good agreement between the previous researches and the comparison indicates that the CFD could be considered as a proper tool for determination of wake properties, windward and crosswind distance between wind turbines in a wind farm.


Sign in / Sign up

Export Citation Format

Share Document