Versatile Model for Simulation of Rural Road Traffic

Author(s):  
Andreas Tapani

In many countries the road mileage is dominated by rural highways. For that reason it is important to have access to efficient tools for evaluation of the performance of such roads. For other road types, e.g., freeways and urban street networks, a wealth of microsimulation models is available. However, only a few models dedicated to rural roads have been developed. None of these models handles traffic flows interrupted by intersections or roundabouts, nor are the models capable of describing the traffic flow on rural roads with a cable barrier between oncoming lanes. These are major drawbacks when Swedish roads, on which cable barriers and roundabouts are becoming increasingly important, are modeled. Moreover, as new areas of application for rural road simulation arise, a flexible and detailed model is needed. Such applications include, among other things, simulation of driver assistance systems and estimation of pollutant emissions. This paper introduces a versatile traffic microsimulation model for the rural roads of today and of the future. The model system presented, the Rural Traffic Simulator (RuTSim), is capable of handling all common types of rural roads, including the effects of roundabouts and intersections on the traffic on the main road. The purpose of the paper is to describe the simulation approach and the traffic modeling used in RuTSim. A verification of the RuTSim model is also included. RuTSim is found to produce outputs representative of all common types of rural roads in Sweden.

2011 ◽  
Vol 97-98 ◽  
pp. 1042-1045 ◽  
Author(s):  
Chuan Jiao Sun ◽  
Ru Yue Bai ◽  
Yuan Yuan Yu

9238 traffic accidents data are collected in rural road of China. Through the data analysis, the main causes of rural road traffic accident are presented. The external environment, the participant features, road features and accident characteristics are involved. The regression analysis in SPSS is applied to find the relationship between the accident features. Overall, the rural road traffic accident was mainly due to in the rural area there are mass travel mode, lower grade roads, poorer safety awareness of traveler and the road is lack of traffic safety facilities and so on.


Author(s):  
M. Yadav ◽  
B. Lohani ◽  
A. K. Singh

<p><strong>Abstract.</strong> The accurate three-dimensional road surface information is highly useful for health assessment and maintenance of roads. It is basic information for further analysis in several applications including road surface settlement, pavement condition assessment and slope collapse. Mobile LiDAR system (MLS) is frequently used now a days to collect detail road surface and its surrounding information in terms three-dimensional (3D) point cloud. Extraction of road surface from volumetric point cloud data is still in infancy stage because of heavy data processing requirement and the complexity in the road environment. The extraction of roads especially rural road, where road-curb is not present is very tedious job especially in Indian roadway settings. Only a few studies are available, and none for Indian roads, in the literature for rural road detection. The limitations of existing studies are in terms of their lower accuracy, very slow speed of data processing and detection of other objects having similar characteristics as the road surface. A fast and accurate method is proposed for LiDAR data points of road surface detection, keeping in mind the essence of road surface extraction especially for Indian rural roads. The Mobile LiDAR data in <i>XYZI</i> format is used as input in the proposed method. First square gridding is performed and ground points are roughly extracted. Then planar surface detection using mathematical framework of principal component analysis (PCA) is performed and further road surface points are detected using similarity in intensity and height difference of road surface pointe in their neighbourhood.</p><p>A case study was performed on the MLS data points captured along wide-street (two-lane road without curb) of 156<span class="thinspace"></span>m length along rural roadway site in the outskirt of Bengaluru city (South-West of India). The proposed algorithm was implemented on the MLS data of test site and its performance was evaluated it terms of recall, precision and overall accuracy that were 95.27%, 98.85% and 94.23%, respectively. The algorithm was found computationally time efficient. A 7.6 million MLS data points of size 27.1<span class="thinspace"></span>MB from test site were processed in 24 minutes using the available computational resources. The proposed method is found to work even for worst case scenarios, i.e., complex road environments and rural roads, where road boundary is not clear and generally merged with road-side features.</p>


2018 ◽  
Vol 5 (1) ◽  
pp. 60-71
Author(s):  
Hezekiah O. Adeyemi ◽  
Oluwaseun O. Martins O. Martins ◽  
Olanike O. Ade-Ikuesan, O. Ade-Ikuesan ◽  
Olawale O. Olaluwoye O. Olaluwoye

Local Governments (LGs), the third tier of government in Nigeria, are expected to maintain infrastructure facilities at the grass root level but most rural communities in Southwest Nigeria are characterized by poorly maintained roads. This study assessed conditions of Moveable Rural Road Maintenance Equipment (MRRME) under LGs in Southwest Nigeria vis-a-vis the safety levels on the rural roads. The study measured, impacts of roads conditions on commercial drivers/riders (cdr) and, level of usage of MRRME for the roads. Questionnaires were used to measure: accident rates and impacts among 250 cdr on 9 selected rural roads; Maintenance Performance Measures (MPM) of MRRME among 430 Senior Technical Officers (STOs) and Senior Finance Offices (SFOs) in 84 LG secretariats. The conditions of MRRME were carried out using observational method. More than 72% of cdr were involved in one crash or another and 89% of them attributed this to bad roads. Less than 26% of MRRME was functional with weak plans/tools put in place for correct maintenance program leading to a high level of MRRMEs’ failures and total neglect. T-test t (428) = -5.146, p = 0.421) found that the opinions of STOs (poor ratings for MPM policy implementation) were not different from that of the SFO. There is the need for safety attitudinal change among cdr. LGs also need empowerment to ensure proper maintenance of MRRME and enhances their availability. These measures among other will reduce accidents death counts on Nigeria rural roads.


2018 ◽  
Vol 10 (11) ◽  
pp. 3864 ◽  
Author(s):  
Longyu Shi ◽  
Nigar Huseynova ◽  
Bin Yang ◽  
Chunming Li ◽  
Lijie Gao

Suburban roads are an important part of China’s road network and essential infrastructure for rural development. Poorly designed road curves and scarcity of traffic signs have caused an excessively high traffic accident rate in plain topographical areas. In this study, an approach to evaluate and improve rural road traffic safety is introduced. Based on fuzzy and cask theory and weighted analysis, a cask evaluation model is built. It provides a quantitative instant method for analyzing road safety in the absence of traffic accident information or rigorous road space data, by identifying dangerous sections and key impact factors, and ultimately help to put forward traffic safety improvements. Based on the application to a specific section of Xiaodang Central Road in the Fengxian District of Shanghai, the result shows that the pavement conditions of cement-hardened dual-lane rural roads was good, but traffic safety was poor. Missing traffic signs, unreasonable road alignment, and poor roadside conditions were the main problems. Finally, improvements of the short-stave subsystem were proposed: the location of guide signs and roadside conditions should be improved, and the number and efficacy of the rural road traffic signs need to be increased, and markings should be and receive regular maintenance.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 695
Author(s):  
Marek Bogacki ◽  
Robert Oleniacz ◽  
Mateusz Rzeszutek ◽  
Paulina Bździuch ◽  
Adriana Szulecka ◽  
...  

One of the elements of strategy aimed at minimizing the impact of road transport on air quality is the introduction of its reorganization resulting in decreased pollutant emissions to the air. The aim of the study was to determine the optimal strategy of corrective actions in terms of the air pollutant emissions from road transport. The study presents the assessment results of the emission reduction degree of selected pollutants (PM10, PM2.5, and NOx) as well as the impact evaluation of this reduction on their concentrations in the air for adopted scenarios of the road management changes for one of the street canyons in Krakow (Southern Poland). Three scenarios under consideration of the city authorities were assessed: narrowing the cross-section of the street by eliminating one lane in both directions, limiting the maximum speed from 70 km/h to 50 km/h, and allowing only passenger and light commercial vehicles on the streets that meet the Euro 4 standard or higher. The best effects were obtained for the variant assuming banning of vehicles failing to meet the specified Euro standard. It would result in a decrease of the yearly averaged PM10 and PM2.5 concentrations by about 8–9% and for NOx by almost 30%.


2021 ◽  
Vol 13 (10) ◽  
pp. 5512
Author(s):  
Ricardo Tomás ◽  
Paulo Fernandes ◽  
Joaquim Macedo ◽  
Margarida Cabrita Coelho

Carpooling is a mobility concept that has been showing promising results in reducing single occupancy use of private cars, which prompted many institutions, namely universities, to implement carpooling platforms to improve their networks sustainability. Nowadays, currently under a pandemic crisis, public transportation must be used with limitations regarding the number of occupants to prevent the spread of the virus and commuters are turning even more to private cars to perform their daily trips. Carpooling under a set of precaution rules is a potential solution to help commuters perform their daily trips while respecting COVID-19 safety recommendations. This research aimed to develop an analysis of the road traffic and emission impacts of implementing carpooling, with social distancing measures, in three university campus networks through microscopic traffic simulation modeling and microscopic vehicular exhaust emissions estimation. Results indicate that employing carpooling for groups of up to three people to safely commute from their residence area to the university campus has the potential to significantly reduce pollutant emissions (reductions of 5% and 7% in carbon dioxide and nitrogen oxides can be obtained, respectively) within the network while significantly improving road traffic performance (average speed increased by 7% and travel time reduced by 8%).


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 119 ◽  
Author(s):  
Hugo Ferreira ◽  
Carlos Manuel Rodrigues ◽  
Carlos Pinho

This study presents a methodology for classifying road traffic energy efficiency. The indicators defined discriminate the impact of the road vertical and horizontal alignments upon energy consumption, disclosing the improvement potential of the road as a function of the traffic origin–destination matrix. The methodologic approach is based on basic physical principals, thus guarantying its generality, as opposed to the usual empirical mesoscale approaches. A simplified algebraic procedure is also proposed, resorting to simplified driving cycles and a constant speed assumption (CSA), thus avoiding the intricacy of microscale/microsimulation models. The simplified methodology was validated against field data acquired on the Portuguese highway A25. A microscale vehicle specific power analysis combined with detailed fuel models is compared against CSA results. The findings demonstrate its adequacy for free-flow traffic conditions and the importance of classifying road traffic energy-efficiency. For the case studied, it was found that 49.5% of the round trip propulsive energy expended by a 37-ton truck on the A25, a modern road, was degraded as heat through braking. The difference found between the microscale analysis and CSA approach is 0.8%, despite the speed unevenness, varying between 32 and 96 km/h, with a standard deviation of 24% of the average speed.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 46
Author(s):  
Na-Ra Jeong ◽  
Seung-Won Han ◽  
Jeong-Hee Kim

As a green infrastructure component, urban street vegetation is increasingly being utilized to mitigate air pollution, control microclimates, and provide aesthetic and ecological benefits. This study investigated the effect of vegetation configurations on particulate matter (PM) flows for pedestrians in road traffic environments via a computation fluid dynamics analysis based on the road width (four and eight-lane) and vegetation configuration (single-, multi-layer planting, and vegetation barrier). Airflow changes due to vegetation influenced PM inflow into the sidewalk. Vegetation between roadways and sidewalks were effective at reducing PM concentrations. Compared to single-layer planting (trees only), planting structures capable of separating sidewalk and roadway airflows, such as a multi-layer planting vegetation barrier (trees and shrubs), were more effective at minimizing PM on the sidewalk; for wider roads, a multi-layer structure was the most effective. Furthermore, along a four-lane road, the appropriate vegetation volume and width for reducing PM based on the breathing height (1.5 m) were 0.6 m3 and 0.4 m, respectively. The appropriate vegetation volume and width around eight-lane roads, were 1.2–1.4 m3 and 0.8–0.93 m, respectively. The results of this study can provide appropriate standards for street vegetation design to reduce PM concentrations along sidewalks.


2011 ◽  
Vol 90-93 ◽  
pp. 3318-3323
Author(s):  
Hong Yuan Liu ◽  
Jing Song Ye ◽  
Cheng Min Duan

The infrastructure data plays a significant role in the construction and maintenance of the rural roads. It is highly necessary to better examine the rural roads infrastructure data, ensuring the authenticity, accuracy and validity of the data. This paper studies a method for the data examination, including the real time examination in the field procedure, and the indoor complete examination, examining the road line shape, mileage, important technical indices and the ancillary facilities’ positions and import technical indices. This paper designs a solution for the data examination and develops the Rural Road Infrastructure Data Examining System. According to the experiments, the efficiency of the solution is proved.


Sign in / Sign up

Export Citation Format

Share Document