Monte Carlo Simulation Approach to the Duration of Yellow Lights at Signalized Intersections Considering the Stochastic Characteristics of Drivers

Author(s):  
Ze-hao Jiang ◽  
Xiao-guang Yang ◽  
Fang-kai Wang ◽  
Tao Wang

In China, around 90% of traffic crashes at signalized intersections take place within the signal change intervals, especially during signal change from green to red. Hence, yellow time, which is a part of inter-green time, is of great significance to the safety of signalized intersections. The conventional calculation method for duration of yellow light (DYL) ignores the stochastic characteristics of drivers, which we believe is an important factor in this calculation. Therefore, the purpose of this research is to investigate a new approach to calculate DYL based on safety reliability theory in which the randomness of human factors is taken into consideration. Firstly, a comprehensive literature review concerning the conventional calculation methods of DYL is conducted. Secondly, a theoretical calculation method of DYL based on safety reliability theory is put forward which, different from the conventional methods, accounts for the stochastic characteristics of drivers. Additionally, a driving simulation experiment is designed to obtain two driving behavior parameters of Chinese drivers: perception–reaction time (PRT) and safe acceptable acceleration (SAA). Thirdly, a Monte Carlo simulation is employed to simulate the interactive process of PRT and SAA, and solve the proposed model. Finally, according to the Monte Carlo simulation results, a look-up table describing the relationship between DYL, safety reliability (50–90%) and approaching speed (15–40 km/h) is made. Results show that this method successfully incorporates the probabilistic nature of driving behavior. Taking the safety reliability into consideration can provide a more reasonable method to calculate the DYL of signalized intersections.

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Ze-hao Jiang ◽  
Tao Wang

In China, around ninety percent of the traffic accidents at signalized intersections occur within the signal change intervals, especially during signal change from green to red. Hence, intergreen time (IGT), that is, yellow change interval plus red clearance interval, is of great significance to the safety at signalized intersections. The conventional calculation method of IGT ignores the randomness of drivers’ behaviors, which we believe is an important factor in calculation of IGT. Therefore, the purpose of this research is to investigate a new approach to calculate the IGT based on safety reliability theory. Firstly, a comprehensive literature review concerning the conventional calculation methods of IGT is conducted. Secondly, a theoretical calculation method of IGT based on safety reliability theory is put forward; different from the conventional methods, this model accounts for the uncertainty of driving behavior parameters. Thirdly, a Monte-Carlo simulation is employed to simulate the interactive process of perception-reaction time (PRT) and vehicular deceleration and solve the proposed model. Finally, according to the Monte-Carlo simulation results, the curve clusters describing the relationship between IGT, safety reliability (50%-90%), and intersection width (15-35m) are drawn. Results show that the IGT of a signalized intersection, obeying the normal distribution, is influenced by multiple factors and most sensitive to the PRT and vehicular deceleration. Our method thus successfully incorporates the probabilistic nature of driving behavior. Taking the safety reliability into consideration can provide a more reasonable method to calculate the IGT of signalized intersections.


2011 ◽  
Vol 48-49 ◽  
pp. 224-227
Author(s):  
Dong Chen Qin ◽  
Qiang Zhu ◽  
Hong Xia Wu ◽  
Zhe Feng Guo

In order to research the motion precision reliability of hydraulic support when the influence of the bar length error and gap error is considered, the motion trace mathematical model for the top beam of hydraulic support is established, with the calculation method of motion precision reliability and the effective length of bar based on continuous contact model. Taking some type of hydraulic support as an example, its motion precision reliability is calculated and analyzed. The Monte Carlo simulation is also used to verify the model, and the T-R curve of the gap error and the reliability is plotted. The results from simulation accord with those from the theoretical calculation, which verifies the model established and can provide some valuable reference for the related future research.


2012 ◽  
Vol 174-177 ◽  
pp. 3219-3222
Author(s):  
Hui Chen

Practical risk purchasing management method of engineering materials is put forward by using Monte Carlo Simulation. First, the calculation method of economic order quantity is put forward based on rising price. Second, appropriate insurance inventory is calculated when material requirements is variable.


2021 ◽  
Vol 17 (7) ◽  
pp. 155014772110337
Author(s):  
Yue Yuan ◽  
Gang-yi Tu ◽  
Ben Wang ◽  
Ling-ling Wang

Aiming at the problems of complex factors affecting the rate of deception probability of networked of radar nets, the large amount of calculation by Monte Carlo simulation and the inability to quantitatively analyze the influence of various factors on the deception probability of networked, a calculation method of deception probability of networked is proposed. First, according to the homology measurement method based on the Mahalanobis distance, the probability density model of the deception probability of networked is calculated. Its probability density model obeys the non-central chi-square distribution. Then, a hypothesis test model is established to calculate the deception probability of networked mathematical expression. The simulation results show that the error between the calculation method of the deception probability of networked and the calculation result of 1000 times Monte Carlo is less than 2%. The method in this article can analyze the quantitative effect of false target position, interference distance interval, radar position, true target position, and other factors on the deception probability of networked, instead of Monte Carlo simulation, to provide a trade-off between the true target recognition rate and the deception probability of networked theoretical basis.


Author(s):  
Robert Pečenko ◽  
Tomaž Hozjan ◽  
Goran Turk

<p>In this paper the performance based approach to determine the reliability of curved timber beam during the fire is presented. The reliability is preformed with Monte Carlo simulation method, where, in order to reduce the number of simulations, Latin hypercube sampling is applied. The uncertainties are implemented in the advanced calculation method, as randomly generated parameters for both thermal and mechanical analysis. At the end of the paper, the distribution of the mid-span displacement at 30 min, 45 min and at failure time is presented. In addition, failure time that satisfies safety requirement from the Eurocode (<em>β</em> &gt; 3.8) is determined as well.</p>


Author(s):  
Ryuichi Shimizu ◽  
Ze-Jun Ding

Monte Carlo simulation has been becoming most powerful tool to describe the electron scattering in solids, leading to more comprehensive understanding of the complicated mechanism of generation of various types of signals for microbeam analysis.The present paper proposes a practical model for the Monte Carlo simulation of scattering processes of a penetrating electron and the generation of the slow secondaries in solids. The model is based on the combined use of Gryzinski’s inner-shell electron excitation function and the dielectric function for taking into account the valence electron contribution in inelastic scattering processes, while the cross-sections derived by partial wave expansion method are used for describing elastic scattering processes. An improvement of the use of this elastic scattering cross-section can be seen in the success to describe the anisotropy of angular distribution of elastically backscattered electrons from Au in low energy region, shown in Fig.l. Fig.l(a) shows the elastic cross-sections of 600 eV electron for single Au-atom, clearly indicating that the angular distribution is no more smooth as expected from Rutherford scattering formula, but has the socalled lobes appearing at the large scattering angle.


Author(s):  
D. R. Liu ◽  
S. S. Shinozaki ◽  
R. J. Baird

The epitaxially grown (GaAs)Ge thin film has been arousing much interest because it is one of metastable alloys of III-V compound semiconductors with germanium and a possible candidate in optoelectronic applications. It is important to be able to accurately determine the composition of the film, particularly whether or not the GaAs component is in stoichiometry, but x-ray energy dispersive analysis (EDS) cannot meet this need. The thickness of the film is usually about 0.5-1.5 μm. If Kα peaks are used for quantification, the accelerating voltage must be more than 10 kV in order for these peaks to be excited. Under this voltage, the generation depth of x-ray photons approaches 1 μm, as evidenced by a Monte Carlo simulation and actual x-ray intensity measurement as discussed below. If a lower voltage is used to reduce the generation depth, their L peaks have to be used. But these L peaks actually are merged as one big hump simply because the atomic numbers of these three elements are relatively small and close together, and the EDS energy resolution is limited.


Sign in / Sign up

Export Citation Format

Share Document