Feasibility of using Mastic for Performance Grading in Place of Extraction using SPS10 Mixtures

Author(s):  
Haleh Azari ◽  
Alaeddin Mohseni ◽  
Richard Steger ◽  
Dennis Muncy

Because of the increased use of reclaimed asphalt pavement, reclaimed asphalt shingles, rejuvenators, and other additives, performance of asphalt mixtures can no longer be guaranteed by controlling properties of the binder. To determine the effect of additives on asphalt performance, the current procedure is to extract the binder from the mixture using solvents and recover the binder by removing the solvent. This is a two-step procedure, which can be time consuming and costly and which requires chemicals considered hazardous unless used with special care. Another issue is the quality of the extracted binder, as the process of dissolving the binder and recovering it from chemicals may affect the properties of the extracted binder. In this study, we suggest the use of mastic separated from the mixture, in place of extraction. The fine portion of the mixture (particles less than 0.25 mm) is physically separated from the mixture without use of solvents. This material is called composite mastic since it includes effects from all additives on the binder. The process of preparing composite mastic is significantly faster and less costly than extracting the binder. The separated mastic is tested following the Unified Performance Tests by incremental Method (UPTiM) using a dynamic shear rheometer to determine the high-, low-, and intermediate-temperature performance grades, similar to those of asphalt binder. This study shows strong correlations between properties of composite mastic, extracted asphalt, and asphalt mixture. Therefore, testing mastic could be a reliable alternative to testing extracted binder and compacted mixture.

2019 ◽  
Vol 2 (2) ◽  
pp. 149-157
Author(s):  
Hendra Arianto ◽  
Sofyan M. Saleh ◽  
Renni Anggraini

Reuse of reclaimed asphalt pavement material (RAP) is an alternative which applicated for potential enough on the roughness of the road. RAP material can be reused by adding the asphalt and the new aggregate according of the mixture composition so that it is expected will be obtained the quality as planned. One of the efforts made in improving the quality of asphalt mixture RAP material is using a modified asphalt with additional material, such as styrofoam. The use of styrofoam into the asphalt is expected to improve the technical properties of a mixture. The purpose of this research is to know the comparative characteristics of hot mix asphalt (asphalt concrete) type AC-WC that uses RAP material with additional asphalt pen. 60/70 and asphalt pen. 60/70 substitution in the styrofoam by 8%, 10% and 12% against the weight of asphalt based on levels of asphalt left on the material. The initial stages of this study is to conduct an examination of the physical properties of RAP material, then manufacturing a specimen with variations of the addition of asphalt and aggregate new levels based on the job mix diesign (JMD) Bina Marga Aceh (2013). Based on research results, parameter values marshall on all types of asphalt mixture with new aggregate as well as RAP materials and the use of 100% asphalt pen. 60/70 additional or different types of asphalt on OAC has fulfilled the technical specifications defined by the Bina Marga (2014). Best stability values obtained on asphalt mixture using RAP material with additional asphalt pen. 60/70 with 12% styrofoam substitution on OAC JMD Bina Marga Aceh, that amounted to 3,308.72 kg, the lowest value stability retrieved on asphalt mixture using a new aggregate based on the results of Department of Bina Marga Aceh on OAC i.e. of 983.94 kg.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Mojtaba Mohammadafzali ◽  
Hesham Ali ◽  
James A. Musselman ◽  
Gregory A. Sholar ◽  
Aidin Massahi

Fatigue cracking is an important concern when a high percentage of Reclaimed Asphalt Pavement (RAP) is used in an asphalt mixture. The aging of the asphalt binder reduces its ductility and makes the pavement more susceptible to cracking. Rejuvenators are often added to high-RAP mixtures to enhance their performance. The aging of a rejuvenated binder is different from virgin asphalt. Therefore, the effect of aging on a recycled asphalt mixture can be different from its effect on a new one. This study evaluated the cracking resistance of 100% recycled asphalt binders and mixtures and investigated the effect of aging on this performance parameter. The cracking resistance of the binder samples was tested by a Bending Beam Rheometer. An accelerated pavement weathering system was used to age the asphalt mixtures and their cracking resistance was evaluated by the Texas Overlay Test. The results from binder and mixture tests mutually indicated that rejuvenated asphalt has a significantly better cracking resistance than virgin asphalt. Rejuvenated mixtures generally aged more rapidly, and the rate of aging was different for different rejuvenators.


2013 ◽  
Vol 361-363 ◽  
pp. 1635-1639
Author(s):  
Qing Zhou Wang ◽  
Shu Yan Liu ◽  
Xiao Li Li

The warm mix asphalt technology was introduced to breaks through the low reclaimed asphalt pavement (RAP) ratio in central plant hot recycled engineering. Firstly, performance tests for traditional hot mix asphalt and central plant warm recycled asphalt mixture with different RAP ratios (0%,40%,50%,70%,100%) were conducted. It was concluded that the performance of warm mix asphalt was as good as hot mix asphalt, and the RAP ratio could increase to 60% by central plant warm recycling technology. Then a practical central plant warm recycled engineering with RAP ratio 50% was analyzed. It was concluded that not only the performance of the recycled asphalt mixture met the standard requirements absolutely, but also the compaction quality of the recycled pavement was improved.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2567
Author(s):  
Pawel Slabonski ◽  
Beata Stankiewicz ◽  
Damian Beben

The most technologically advanced form of road construction uses a high content of reclaimed asphalt pavement (RAP) as a component of its asphalt mixture (AM). However, there is a real problem with the effective interaction of RAP and MA. The research herein described presents an effective use of RAP originating from the recycling process of old pavements thanks to the application of an original rejuvenator. Two types of AM were designed concerning the base course of pavement as well as the wearing course and the binder course for various traffic categories. The achieved results show that the rejuvenator improved the homogenization of RAP with the asphalt binder and aggregate in each mixture type. On the basis of the research, the possibility of using paving AM with an increased content of RAP in lowered technological temperatures received a favorable assessment. Mixtures of asphalt concrete containing 40% RAP meet both Polish and German requirements for mixtures intended for heavy traffic pavements. Thanks to use of the rejuvenator, it is possible to compact AM layers containing RAP in a final compaction temperature lowered by about 20 °C. The achieved AM lab test results were confirmed on trial road sections. The rejuvenator used in tested AMs improved the homogenization of RAP with both binder and virgin aggregate. Moreover, the study proved that it is possible to use 20%, 40%, and even 100% RAP contents in the mixtures thanks to the use of the rejuvenator based on plant resin and the creation of conditions enabling the effective homogenization of AM components.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2781
Author(s):  
Munder Bilema ◽  
Mohamad Yusri Aman ◽  
Norhidayah Abdul Hassan ◽  
Zubair Ahmed Memon ◽  
Hend Ali Omar ◽  
...  

Researchers are exploring the utilisation of reclaimed asphalt pavement (RAP) as a recycled material to determine the performance of non-renewable natural aggregates and other road products such as asphalt binder, in the construction and rehabilitation stage of asphalt pavements. The addition of RAP in asphalt mixtures is a complex process and there is a need to understand the design of the asphalt mixture. Some of the problems associated with adding RAP to asphalt mixtures are moisture damage and cracking damage caused by poor adhesion between the aggregates and asphalt binder. There is a need to add rejuvenators to the recycled mixture containing RAP to enhance its performance, excepting the rutting resistance. This study sought to improve asphalt mixture performance and mechanism by adding waste frying oil (WFO) and crumb rubber (CR) to 25 and 40% of the RAP content. Moreover, the utilisation of CR and WFO improved pavement sustainability and rutting performance. In addition, this study prepared five asphalt mixture samples and compared their stiffness, moisture damage and rutting resistance with the virgin asphalt. The results showed enhanced stiffness and rutting resistance of the RAP but lower moisture resistance. The addition of WFO and CR restored the RAP properties and produced rutting resistance, moisture damage and stiffness, which were comparable to the virgin asphalt mixture. All waste and virgin materials produce homogeneous asphalt mixtures, which influence the asphalt mixture performance. The addition of a high amount of WFO and a small amount of CR enhanced pavement sustainability and rutting performance.


Sign in / Sign up

Export Citation Format

Share Document