Testing Methodology for Resilient Modulus of Base Materials

Author(s):  
S. Nazarian ◽  
R. Pezo ◽  
S. Melarkode ◽  
M. Picornell

Resilient moduli of base and subgrade materials are important parameters in the new pavement design method adopted by AASHTO and many state agencies. Several testing protocols for determining the resilient moduli of subgrade soils have been proposed and evaluated in the technical literature. Unfortunately, less effort has been focused on developing protocols appropriate for base materials. The main objective was to describe a resilient modulus testing procedure that has been developed for the Texas Department of Transportation. The proposed procedure contains the main steps of the AASHTO T294-92 procedure, with several exceptions. Namely, the loading sequence of the T294-92 procedure was modified to avoid subjecting the specimens to high devi-atoric stresses at low confining pressures. The conditioning cycles were replaced by a procedure in which the specimen was grouted to the platens to minimize disturbance to the specimen during stage testing. The effects of end restraint on the vertical strains were minimized by measuring the deformations of the middle one-third of the specimen. To avoid well-known problems with mounting linear variable differential transformers on the specimen, noncontact probes were used to measure deformations. To maximize the amount of information gained, the lateral deformations were also measured with noncontact probes to determine the Poisson's ratio. On the basis of tests on nine synthetic specimens with known properties and nine different base materials from different parts of Texas, it was concluded that the proposed methodology yields accurate and repeatable results.

Author(s):  
S. Nazarian ◽  
J. Rojas ◽  
R. Pezo ◽  
D. Yuan ◽  
I. Abdallah ◽  
...  

Resilient modulus of base is an important parameter in the AASHTO pavement design method. However, the manner to determine this parameter is not well defined. Recent efforts in combining the resilient moduli from laboratory testing with those obtained in the field using nondestructive testing devices are presented. Laboratory tests were carried out in two stages. In the first stage, virgin materials from the quarry compacted to optimum moisture content were tested. In the second stage, similar base materials were retrieved from in-service roads. Specimens were prepared and tested at the corresponding field densities and moisture contents. Nondestructive tests were performed with the Falling Weight Deflectometer and the Seismic Pavement Analyzer. Based on tests on 10 different base materials from different parts of Texas, it was concluded that it may be difficult to directly compare moduli from laboratory and field tests; however, they can be combined for effective pavement design.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Richard Ji ◽  
Nayyarzia Siddiki ◽  
Tommy Nantung ◽  
Daehyeon Kim

In order to implement MEPDG hierarchical inputs for unbound and subgrade soil, a database containing subgradeMR, index properties, standard proctor, and laboratoryMRfor 140 undisturbed roadbed soil samples from six different districts in Indiana was created. TheMRdata were categorized in accordance with the AASHTO soil classifications and divided into several groups. Based on each group, this study develops statistical analysis and evaluation datasets to validate these models. Stress-based regression models were evaluated using a statistical tool (analysis of variance (ANOVA)) andZ-test, and pertinent material constants (k1,k2andk3) were determined for different soil types. The reasonably good correlations of material constants along withMRwith routine soil properties were established. Furthermore, FWD tests were conducted on several Indiana highways in different seasons, and laboratory resilient modulus tests were performed on the subgrade soils that were collected from the falling weight deflectometer (FWD) test sites. A comparison was made of the resilient moduli obtained from the laboratory resilient modulus tests with those from the FWD tests. Correlations between the laboratory resilient modulus and the FWD modulus were developed and are discussed in this paper.


2018 ◽  
Vol 34 ◽  
pp. 01026
Author(s):  
Ahmad Kamil Arshad ◽  
Haryati Awang ◽  
Ekarizan Shaffie ◽  
Wardati Hashim ◽  
Zanariah Abd Rahman

Reclaimed Asphalt Pavement (RAP) is old asphalt pavement that has been removed from a road by milling or full depth removal. The use of RAP in hot mix asphalt (HMA) eliminates the need to dispose old asphalt pavements and conserves asphalt binders and aggregates, resulting in significant cost savings and benefits to society. This paper presents a study on HMA with different RAP proportions carried out to evaluate the volumetric properties and performance of asphalt mixes containing different proportions of RAP. Marshall Mix Design Method was used to produce control mix (0% RAP) and asphalt mixes containing 15% RAP, 25% RAP and 35% RAP in accordance with Specifications for Road Works of Public Works Department, Malaysia for AC14 dense graded asphalt gradation. Volumetric analysis was performed to ensure that the result is compliance with specification requirements. The resilient modulus test was performed to measure the stiffness of the mixes while the Modified Lottman test was conducted to evaluate the moisture susceptibility of these mixes. The Hamburg wheel tracking test was used to evaluate the rutting performance of these mixes. The results obtained showed that there were no substantial difference in Marshall Properties, moisture susceptibility, resilient modulus and rutting resistance between asphalt mixes with RAP and the control mix. The test results indicated that recycled mixes performed as good as the performance of conventional HMA in terms of moisture susceptibility and resilient modulus. It is recommended that further research be carried out for asphalt mixes containing more than 35% RAP material.


Author(s):  
Andrew G. Heydinger

One objective of the FHWA’s Long-Term Pavement Performance (LTPP) program is to determine climatic effects on pavement performance. The LTPP instrumentation program includes seasonal monitoring program (SMP) instrumentation to monitor the seasonal variations of moisture, temperature, and frost penetration. Findings from the SMP instrumentation are to be incorporated into future pavement design procedures. Data from SMP instrumentation at the Ohio Strategic Highway Research Program Test Road (US-23, Delaware County, Ohio) and other reported results were analyzed to develop empirical equations. General expressions for the seasonal variations of average daily air temperature and variations of temperature and moisture in the fine-grained subgrade soil at the test site are presented. An expression for the seasonal variation of resilient modulus was derived. Average monthly weighting factors that can be used for pavement design were computed. Other factors such as frost penetration, depth of water table, and drainage conditions are discussed.


2017 ◽  
Vol 23 (4) ◽  
pp. 275-289
Author(s):  
Benjamin D. Haugen

Abstract Infiltration of surface water increases pore water pressures in slopes and reduces their stability. Common landslide features such as tension cracks and sag ponds can act as preferential pathways for surface drainage and may increase infiltration and exacerbate pore pressure–induced instability. Surface water drainage control is likewise recommended by numerous authors as an effective and inexpensive landslide mitigation method and has been shown to reduce the risk of landslides. While robust design procedures for other geotechnical applications exist (e.g., slope reduction, subsurface drains), similar procedures for landslide surface water drainage control have remained largely ad hoc and vary among practitioners. The objective of this article is to summarize technical literature related to surface water drainage control and provide a coherent design procedure for landslides.


2020 ◽  
Vol 32 (9) ◽  
pp. 06020011
Author(s):  
Behnam Ghorbani ◽  
Arul Arulrajah ◽  
Guillermo Narsilio ◽  
Suksun Horpibulsuk ◽  
Myint Win Bo

Sign in / Sign up

Export Citation Format

Share Document