Characterization of Subchondral Bone Repair for Marrow-Stimulated Chondral Defects and Its Relationship to Articular Cartilage Resurfacing

2011 ◽  
Vol 39 (8) ◽  
pp. 1731-1741 ◽  
Author(s):  
Hongmei Chen ◽  
Anik Chevrier ◽  
Caroline D. Hoemann ◽  
Jun Sun ◽  
Wei Ouyang ◽  
...  
2019 ◽  
Author(s):  
Krishna A. Pucha ◽  
Jay M. McKinney ◽  
Julia M. Fuller ◽  
Nick J. Willett

AbstractObjectiveOsteoarthritis (OA) is a chronic degenerative disease of the joints characterized by articular cartilage degradation. While there are clear sex differences in OA development in humans, most pre-clinical research has been conducted solely in male animals thus limiting the ability of these findings to be generalized to both sexes in the context of this disease. The objective of this study was to determine if sex impacts the progression and severity of OA in the rat medial meniscal tear (MMT) preclinical animal model used to surgically induce OA. It was hypothesized that differences would be observed between males and females following MMT surgery.DesignA MMT model was employed in male and female Lewis rats to induce OA. Animals were euthanized 3 weeks post-surgery and EPIC-μCT was used to quantitatively evaluate articular cartilage structure and composition, osteophyte volumes and subchondral bone structure.ResultsQuantitative analysis of the medial 1/3 articular cartilage via EPIC-μCT showed increased cartilage thickness and proteoglycan loss in the MMT of both sexes, when compared to sham. Additionally, both male and female animals in the MMT group had increased subchondral bone mineral density and larger total osteophyte volumes due to MMT.ConclusionThese data demonstrate that OA can be induced in both sexes using the rat MMT model. Moving forward, adding sex as a factor in preclinical OA studies should be standard practice in pre-clinical studies in order to elucidate more inclusive and translatable results into the clinic.


2015 ◽  
Vol 67 (2) ◽  
pp. 325-333
Author(s):  
R.B. Eleotério ◽  
K.C.S. Pontes ◽  
J.P. Machado ◽  
E.C.C. Reis ◽  
P.S. Ferreira ◽  
...  

Chondroitin and glucosamine sulfate nutraceuticals are commonly used in the management of degenerative articular disease in veterinary routine. However, there are controversies on the contribution of these substances to articular cartilage. The purpose of this study was to evaluate the efficiency of a chondroitin and glucosamine sulfate-based veterinary nutraceutical on the repair of an induced osteochondral defect in a dog femoral condyle, by macroscopic, histological and histomorphometric analyses. The nutraceutical was orally administered the day following injury induction, every 24 hours (treated group, TG, n=24), compared with animals that did not receive the product (control group, CG, n=24). Six animals per group were anaesthetized for sample collection at 15, 30, 60 and 90 days after surgery. At 15 days, defects were macroscopically filled with red-pinkish tissue. After 30 days, whitish color tissue was observed, both in TG and CG animals, with firmer consistency to touch at 60 and 90 postoperative days. Histological analysis demonstrated that, in both groups, there was initial blood clot formation, which was subsequently substituted by a fibrin net, with capillary proliferation from the adjacent bone marrow and infiltration of mesenchymal cells in clot periphery. As cellular differentiation developed, repair tissue presented a fibrocartilage aspect most of the time, and new subchondral bone formation occurred in the deepest area corresponding to the defect. Histomorphometry suggested that the nutraceutical did not favor the articular cartilage repair process. It was concluded that nutraceutical did not significantly influence chondrocytes proliferation or hyaline architecture restoration.


2011 ◽  
Vol 37 (1) ◽  
pp. 112-121 ◽  
Author(s):  
Simo Saarakkala ◽  
Shu-Zhe Wang ◽  
Yan-Ping Huang ◽  
Jukka S. Jurvelin ◽  
Yong-Ping Zheng

Cartilage ◽  
2017 ◽  
Vol 10 (1) ◽  
pp. 70-81 ◽  
Author(s):  
Dexter Seow ◽  
Youichi Yasui ◽  
Ian D. Hutchinson ◽  
Eoghan T. Hurley ◽  
Yoshiharu Shimozono ◽  
...  

Objective Despite the mechanical and biological roles of subchondral bone (SCB) in articular cartilage health, there remains no consensus on the postoperative morphological status of SCB following bone marrow stimulation (BMS). The purpose of this systematic review was to clarify the morphology of SCB following BMS in preclinical, translational animal models. Design The MEDLINE and EMBASE databases were systematically reviewed using specific search terms on April 19, 2016 based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The morphology of the SCB was assessed using of microcomputed tomography (bone density) and histology (microscopic architecture). Results Seventeen animal studies with 520 chondral lesions were included. The morphology of SCB did not recover following BMS. Compared with untreated chondral defects, BMS resulted in superior morphology of superficial SCB and cartilage but inferior morphology (specifically bone density, P < 0.05) of the deep SCB. Overall, the use of biological adjuvants during BMS resulted in the superior postoperative morphology of SCB. Conclusions Alterations in the SCB following BMS were confirmed. Biologics adjuvants may improve the postoperative morphology of both SCB and articular cartilage. Refinements of BMS techniques should incorporate consideration of SCB damage and restoration. Investigations to optimize BMS techniques incorporating both minimally invasive approaches and biologically augmented platforms are further warranted.


2021 ◽  
Vol 11 (15) ◽  
pp. 7118
Author(s):  
Ermina Hadzic ◽  
Garth Blackler ◽  
Holly Dupuis ◽  
Stephen James Renaud ◽  
Christopher Thomas Appleton ◽  
...  

Post-traumatic osteoarthritis (PTOA) is a degenerative joint disease, leading to articular cartilage breakdown, osteophyte formation, and synovitis, caused by an initial joint trauma. Pro-inflammatory cytokines increase catabolic activity and may perpetuate inflammation following joint trauma. Interleukin-15 (IL-15), a pro-inflammatory cytokine, is increased in OA patients, although its roles in PTOA pathophysiology are not well characterized. Here, we utilized Il15 deficient rats to examine the role of IL-15 in PTOA pathogenesis in an injury-induced model. OA was surgically induced in Il15 deficient Holtzman Sprague-Dawley rats and control wild-type rats to compare PTOA progression. Semi-quantitative scoring of the articular cartilage, subchondral bone, osteophyte size, and synovium was performed by two blinded observers. There was no significant difference between Il15 deficient rats and wild-type rats following PTOA-induction across articular cartilage damage, subchondral bone damage, and osteophyte scoring. Similarly, synovitis scoring across six parameters found no significant difference between genetic variants. Overall, IL-15 does not appear to play a key role in the development of structural changes in this surgically-induced rat model of PTOA.


Sign in / Sign up

Export Citation Format

Share Document