Application of Taylor Vortices in Hemocompatibility Investigations

2003 ◽  
Vol 26 (4) ◽  
pp. 331-338 ◽  
Author(s):  
S. Körfer ◽  
S. Klaus ◽  
K. Mottaghy

Background Artificial organs, implants and extracorporeal circulation affect the physiological flow characteristics of blood as a liquid organ. These artificial systems consist of a wide variety of biomaterials with different geometries and, therefore, with their own flow properties. Secondary flow also occurs in extra – as well as in intracorporeal circulation. Methods In order to investigate the influence of vortical flow conditions a modified Taylor-Couette system was introduced. It consisted of two coaxial cylinders whose surfaces were the target of investigation. The annular gap was filled with donor blood shear and secondary flows were produced by rotating the inner cylinder. Platelet activation and protein adsorption were investigated as markers for thrombogenicity. Results At shear rates high enough to establish stable Taylor vortices (G ≥ 550 s −1) significant differences between vortical Taylor flow and steady laminar flow were detected. At shear rates of G ≥ 550 s −1 laminar flow caused a significantly higher platelet drop and PF4 release when compared to Taylor vortex flow. Also protein adsorption per square unit was significantly higher for laminar flow. Conclusions Based on the present data we conclude that vortical flow patterns lead to an accumulation of platelets and plasma proteins in the vortex center and therefore to a decreased probability of contact between platelets and material surfaces. It can be concluded that a preactivation of the platelets circulating in extracorporeal circuits can be manifested downstream in other geometrical configurations and flow conditions.

Author(s):  
Emna Berrich ◽  
Fethi Aloui ◽  
Jack Legrand

In the simplest and original case of study of the Taylor–Couette TC problems, the fluid is contained between a fixed outer cylinder and a concentric inner cylinder which rotates at constant angular velocity. Much of the works done has been concerned on steady rotating cylinder(s) i.e. rotating cylinders with constant velocity and the various transitions that take place as the cylinder(s) velocity (ies) is (are) steadily increased. On this work, we concentrated our attention in the case in which the inner cylinder velocity is not constant, but oscillates harmonically (in time) clockwise and counter-clockwise while the outer cylinder is maintained fixed. Our aim is to attempt to answer the question if the modulation makes the flow more or less stable with respect to the vortices apparition than in the steady case. If the modulation amplitude is large enough to destabilise the circular Couette flow, two classes of axisymmetric Taylor vortex flow are possible: reversing Taylor Vortex Flow (RTVF) and Non-Reversing Taylor Vortex Flow (NRTVF) (Youd et al., 2003; Lopez and Marques, 2002). Our work presents an experimental investigation of the effect of oscillatory Couette-Taylor flow, i.e. both the oscillation frequency and amplitude on the apparition of RTVF and NRTVF by analysing the instantaneous and local mass transfer and wall shear rates evolutions, i.e. the impact of vortices at wall. The vortices may manifest themselves by the presence of time-oscillations of mass transfer and wall shear rates, this generally corresponds to an instability apparition even for steady rotating cylinder. On laminar CT flow, the time-evolution of wall shear rate is linear. It may be presented as a linear function of the angular velocity, i.e. the evolution is steady even if the angular velocity is not steady. At a “critical” frequency and amplitude, the laminar CT flow is disturbed and Taylor vortices appear. Comparing to a steady velocity case, oscillatory flow accelerate the instability apparition, i.e. the critical Taylor number corresponds to the transition is smaller than that of the steady case. For high oscillation amplitudes of the inner cylinder rotation, the mass transfer time-evolution has a sinusoidal evolution with non equal oscillation amplitudes. If the oscillation amplitude is large enough, it can destabilize the laminar Couette flow, Taylor vortices appears. The vortices direction can be deduced from the sign of the instantaneous wall shear rate time evolution.


2016 ◽  
Vol 138 (8) ◽  
Author(s):  
Gaku Tanaka ◽  
Ryuhei Yamaguchi ◽  
Hao Liu ◽  
Toshiyuki Hayase

For laminar flow in the side branch of a T-junction, periodic fluid vibrations occur with the Strouhal number independent of characteristic flow conditions. As the mechanics is unknown, an experiment was performed to establish the underlying cause in high-shear-rate flow. The fluid vibration appears along both the shearing separation layer and the boundary between two vortices immediately downstream of the side branch, where the shear rates are several orders larger than those further downstream. This vibration is caused by flow instability induced in two types of high-shear-rate flow confirming that is a universal phenomenon associated with the geometry of the T-junction.


1979 ◽  
Vol 21 (1) ◽  
pp. 19-24 ◽  
Author(s):  
J. E. R. Coney ◽  
D. A. Simmers

The results of a shear stress investigation for combined axial and rotational flow, under conditions of both laminar flow and laminar flow plus Taylor vortices, are presented. These results show that two distinct régimes of shear stress dependency exist. In the primary régime, the shear stress is constant and depends only on the imposed axial flow, the flow being either laminar (Poiseuille and Couette flows) or laminar with vortices, but with the effect of the vortices being negligible. In the secondary régime, the shear stress is shown to depend only on Ta0.735, irrespective of the imposed axial flow. At low axial flow rates, a tertiary régime was observed, but no satisfactory explanation can be found for this phenomenon. The demarcation between the primary and secondary flow régimes differs markedly from those of other investigators. In the present study, critical conditions are determined by the point at which vortices begin to have an effect on measurements taken at the outer annular wall rather than the conditions under which vortices are initially formed. Evidence is presented for the vortices being formed within a confined layer near to the inner cylinder and thereafter growing with increasing rotational speed until the outer annular wall is approached, resulting in the much higher critical conditions found in the present study.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Tobias Blanke ◽  
Markus Hagenkamp ◽  
Bernd Döring ◽  
Joachim Göttsche ◽  
Vitali Reger ◽  
...  

AbstractPrevious studies optimized the dimensions of coaxial heat exchangers using constant mass flow rates as a boundary condition. They show a thermal optimal circular ring width of nearly zero. Hydraulically optimal is an inner to outer pipe radius ratio of 0.65 for turbulent and 0.68 for laminar flow types. In contrast, in this study, flow conditions in the circular ring are kept constant (a set of fixed Reynolds numbers) during optimization. This approach ensures fixed flow conditions and prevents inappropriately high or low mass flow rates. The optimization is carried out for three objectives: Maximum energy gain, minimum hydraulic effort and eventually optimum net-exergy balance. The optimization changes the inner pipe radius and mass flow rate but not the Reynolds number of the circular ring. The thermal calculations base on Hellström’s borehole resistance and the hydraulic optimization on individually calculated linear loss of head coefficients. Increasing the inner pipe radius results in decreased hydraulic losses in the inner pipe but increased losses in the circular ring. The net-exergy difference is a key performance indicator and combines thermal and hydraulic calculations. It is the difference between thermal exergy flux and hydraulic effort. The Reynolds number in the circular ring is instead of the mass flow rate constant during all optimizations. The result from a thermal perspective is an optimal width of the circular ring of nearly zero. The hydraulically optimal inner pipe radius is 54% of the outer pipe radius for laminar flow and 60% for turbulent flow scenarios. Net-exergetic optimization shows a predominant influence of hydraulic losses, especially for small temperature gains. The exact result depends on the earth’s thermal properties and the flow type. Conclusively, coaxial geothermal probes’ design should focus on the hydraulic optimum and take the thermal optimum as a secondary criterion due to the dominating hydraulics.


1974 ◽  
Vol 96 (1) ◽  
pp. 28-35 ◽  
Author(s):  
R. C. DiPrima ◽  
J. T. Stuart

At sufficiently high operating speeds in lightly loaded journal bearings the basic laminar flow will be unstable. The instability leads to a new steady secondary motion of ring vortices around the cylinders with a regular periodicity in the axial direction and a strength that depends on the azimuthial position (Taylor vortices). Very recently published work on the basic flow and the stability of the basic flow between eccentric circular cylinders with the inner cylinder rotating is summarized so as to provide a unified description. A procedure for calculating the Taylor-vortex flow is developed, a comparison with observed properties of the flow field is made, and formulas for the load and torque are given.


1976 ◽  
Vol 75 (1) ◽  
pp. 1-15 ◽  
Author(s):  
J. A. Cole

Critical speeds for the onset of Taylor vortices and for the later development of wavy vortices have been determined from torque measurements and visual observations on concentric cylinders of radius ratios R1/R2 = 0·894–0·954 for a range of values of the clearance c and length L: c/R1 = 0·0478–0·119 and L/c = 1–107. Effectively zero variation of the Taylor critical speed with annulus length was observed. The speed at the onset of wavy vortices was found to increase considerably as the annulus length was reduced and theoretical predictions are realistic only for L/c values exceeding say 40. The results were similar for all four clearance ratios examined. Preliminary measurements on eccentrically positioned cylinders with c/R1 = 0·119 showed corresponding effects.


2000 ◽  
Vol 122 (2) ◽  
pp. 403-411 ◽  
Author(s):  
P. W. Longest, ◽  
C. Kleinstreuer ◽  
J. S. Kinsey

Steady incompressible turbulent air flow and transient carbon monoxide transport in an empty Rochester-style human exposure chamber have been numerically simulated and compared with experimental data sets. The system consisted of an inlet duct with a continuous carbon monoxide point source, 45- and 90-degree bends, a round diffuser, a round-to-square transition, a rectangular diffuser, the test chamber, a perforated floor, and again transition pieces from the chamber to an outlet duct. Such a configuration induced highly nonuniform vortical flow patterns in the chamber test area where a pollutant concentration is required to be constant at breathing level for safe and accurate inhalation studies. Presented are validated momentum and mass transfer results for this large-scale system with the main goals of determining the development of tracer gas (CO) distributions in the chamber and analyzing the contributions to CO-mixing. Numerical simulations were conducted employing a k-ε model and the latest available RNG k-ε model for air and CO-mixing. Both models predict similar velocity fields and are in good agreement with measured steady and transient CO-concentrations. It was found that secondary flows in the inlet section and strong vortical flow in the chamber with perforated flooring contributed to effective mixing of the trace gas at breathing levels. Specifically, in the height range of 1.4 m<h<2.0 m above the chamber floor, predicted CO-concentrations rapidly reached a near constant value which agrees well with experimental results. This work can be extended to analyze trace gas mixing as well as aerosol dispersion in occupied test chambers with or without flow redirection devices installed in the upstream section. A complementary application is particle transport and deposition in clean rooms of the electronic, pharmaceutical, and health care industries. [S0098-2202(00)01702-8]


Author(s):  
Scott C. Corbett ◽  
Amin Ajdari ◽  
Ahmet U. Coskun ◽  
Hamid N.-Hashemi

Thrombosis and hemolysis are two problems encountered when processing blood in artificial organs. Physical factors of blood flow alone can influence the interaction of proteins and cells with the vessel wall, induce platelet aggregation and influence coagulation factors responsible for the formation of thrombus, even in the absence of chemical factors in the blood. These physical factors are related to the magnitude of the shear rate/stress, the duration of the applied force and the local geometry. Specifically, high blood shear rates (or stress) lead to damage (hemolysis, platelet activation), while low shear rates lead to stagnation and thrombosis [1].


1974 ◽  
Vol 96 (1) ◽  
pp. 145-149 ◽  
Author(s):  
J. Freˆne ◽  
M. Godet

An experimental program conducted on an original device was undertaken to study the performance of plain bearings operating at sufficiently high Reynolds number to introduce Taylor vortices. Curves of relative eccentricity, attitude angle, and friction torque were obtained versus speed and load. Experimental results conducted for Reynolds number smaller than 1100 indicate that both laminar and Taylor vortex regimes are encountered. The occurrence of the vortices is identified by a break in the slope of the friction torque versus speed curves. The position of the break is in good agreement with the theoretical predictions of Di Prima and Ritchie. From the practical point of view, the data show that for constant viscosity the occurence of Taylor vortices does not alter the curves of eccentricity versus either speed or load but modifies the attitude angle and frictional torque. In turn, the increase in frictional torque, and subsequently of temperature may cause a decrease in viscosity and thus a drop in load carrying capacity for fluids such as oils whose variations of viscosity with temperature is large.


Sign in / Sign up

Export Citation Format

Share Document