Synthesis of a Novel Intumescent Flame Retardant Oligomer and its Application in ABS Copolymer

2011 ◽  
Vol 391-392 ◽  
pp. 204-208
Author(s):  
Xiao Ping Hu ◽  
Yu Yang Guo ◽  
Quan Min Xu ◽  
Hui Min Heng ◽  
Liang Jun Li

A novel intumescent flame retardant oligomer containing phosphorous-nitrogen structure (PSPTR) was synthesized and characterized by Fourier Transform Infrared (FTIR) and Mass Spectrometry (MS). The thermal behavior of PSPTR was investigated by thermogravimetric analysis (TGA). The TGA data shows that PSPTR has a high initial temperature of thermal degradation and a high char residue of 41.18wt% at 700 . A novel intumescent flame retardant (IFR) system, which is composed of PSPTR and novolac phenol (NP), was used to impart flame retardancy of ABS. The combustion behaviors of the ABS/IFR composites were investigated by Limiting Oxygen Index (LOI) and UL-94 tests. When the content of IFR (PSPTR:NP=1:1 mass ratio) is 30 wt%, the LOI value of ABS/IFR reaches 28.2, and the vertical burning test reaches UL-94 V-1 rating.

2017 ◽  
Vol 748 ◽  
pp. 51-54
Author(s):  
Pei Bang Dai ◽  
Lin Ying Yang ◽  
Ting Zheng ◽  
Chang Qin ◽  
Qi Chen Tang

A rigid polyurethane (PU) flame retardant composite foam was prepared by the compounding of polyols and diisocyanates with a modified intumescent flame retardant (MIFR). The MIFR was based on the three components of intumescent flame retardant normally used and was modified in a surfactant TX-10 solution. The flame retardancy of the PU flame retardant composite foams were evaluated by using the limiting oxygen index (LOI), the UL-94 (vertical flame) test and scanning electron microscopy (SEM). When MIFR was fixed at 20.0 wt% in PU/MIFR composite foams, the MIFR could enhance the flame retardancy and pass V-0 rating of UL-94 test. The microstructures observed by SEM demonstrate that a suitable amount of MIFR can promote formation of compact intumescent charred layers in PU foams.


2012 ◽  
Vol 490-495 ◽  
pp. 3366-3369 ◽  
Author(s):  
Cong Liu

The flame-retardant of Lanthanum phenylphosphinate(LaPi) was prepared and its combination with intumescent flame retardant (IFR) in polypropylene (PP) was analysed using thermogravimetric analysis (TGA), limiting oxygen index (LOI) and the UL-94 test. Compared with using IFR alone, using the combination of LaPi and IFR gained the better classification in the UL 94 test thanks to the combination of the different mechanisms. When 20 wt% loading of flame retardant of LaPi and IFR, a halogen-free V-0 PP material was achieved with a LOI of 31%.


1993 ◽  
Vol 11 (5) ◽  
pp. 442-456 ◽  
Author(s):  
Jun Zhang ◽  
Michael E. Hall ◽  
A. Richard Horrocks

This paper is the first in a series of four which investigates the burning behaviour and the influence of flame retardant species on the flam mability of fibre-forming polymer and copolymers of acrylonitrile. A pressed powdered polymer sheet technique is described that enables a range of polymer compositions in the presence and absence of flame retardants to be assessed for limiting oxygen index, burning rate and char residue deter minations. The method offers a rapid, reproducible and convenient means of screening possible flame retardant systems, and LOI values compare favourably with those of films and fabrics comprising the same polymeric type. Burning rates, however, are sensitive to changes in physical sample character such as form (film vs. powder sheet) and density. Thus the technique forms an excellent basis for the generation of burning data which will enable comprehensive studies of acrylic polymer flammability and flame retardancy to be undertaken.


2013 ◽  
Vol 749 ◽  
pp. 65-70
Author(s):  
Xiao Yan Li ◽  
Yan Chun Li ◽  
Chen Jie Shi ◽  
Si Si Cai ◽  
Xia Wang ◽  
...  

A kind of intumescent flame retardant (IFR) were used for flame retarding of oil-extended hydrogenated styrene-butylenes-styrene (O-SEBS). The samples were systemically characterized by limited oxygen index (LOI), vertical burning test (UL-94), and scanning electron microscopy (SEM); Thermogravimetric (TG) analysis. The results showed that the IFR retardant can promote residual chars with multi-micro holes on the surface of SEBS to inhibit flame; with 45% IFR content, the LOI is 28.3 and flame retardant level is UL-94 classification of V-0, with no dripping. The morphological structures observed by SEM demonstrated that higher IFR content promote to form larger and compact films cover on bubbles of the intumescent char layer. The TG data revealed that the IFR could change the degradation behavior of the O-SEBS, enhance the thermal stability and increase the char residue, The tensile strength of all the O-SEBS/IFR blends had the tensile strength of more than 4MPa and the elongation of more than 850%.


2011 ◽  
Vol 399-401 ◽  
pp. 1376-1380
Author(s):  
Li Hua You ◽  
Yin Yin Hui ◽  
Xiang Ning Shi ◽  
Zhi Han Peng

In this study, a novel phosphorus-nitrogen containing intumescent flame retardant (P-N IFR) poly(melamine 2-carboxyethyl(phenyl) phosphate)(PMCEP) was prepared via the reaction of 2-carboxyethyl (phenyl) phosphinic acid (CEPPA) and melamine (MEL) in two-steps. Meanwhile, the molecular structure of the chemical compound was determined by FTIR,1H-NMR and elemental analysis; and the thermal properties was investigated by means of TGA. Combustion studies revealed high limiting oxygen index (LOI) indicative of better flame-retardancy properties for PBT resin.


2016 ◽  
Vol 29 (5) ◽  
pp. 513-523 ◽  
Author(s):  
Tie Zhang ◽  
Weishi Liu ◽  
Meixiao Wang ◽  
Ping Liu ◽  
Yonghong Pan ◽  
...  

With the aim of developing a novel organic flame retardant, an organic boronic acid derivative containing a triazine ring (2,4,6-tris(4-boronic-2-thiophene)-1,3,5-triazine (3TT-3BA)) was synthesized. The thermal properties of 3TT-3BA and its corresponding intermediate products were investigated by thermogravimetric analysis. The results show that 3TT-3BA has a high char yield (56.9%). The flame retardant properties of epoxy resin (EP) with 3TT-3BA were investigated by cone calorimeter, limiting oxygen index (LOI) test, and vertical burning test (UL 94). The LOI of EP with 20% 3TT-3BA is 31.2% and the UL 94 V-0 rating is achieved for EP with 20% 3TT-3BA. The flame retardant mechanism of 3TT-3BA in EP was investigated using TGA–Fourier transform infrared spectroscopy and scanning electron microscopy.


2020 ◽  
Vol 32 (6) ◽  
pp. 710-718
Author(s):  
Zhengzhou Wang ◽  
Xin Gao ◽  
Wenfeng Li

Flame-retardant epoxy (EP) resin/cyanate ester (CE) composites were prepared with 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) and wollastonite (Wo). The combustion behavior of the flame-retardant EP/CE composites was investigated by limiting oxygen index (LOI), UL-94, and cone calorimeter tests. It is found that the EP/CE composite containing 7 wt% DOPO and 3 wt% Wo (sample 7DO/3Wo/EP/CE) exerts the best flame retardancy (LOI 35.5% and UL-94 V-0 rating). The peak heat release rate and total heat release of sample 7DO/3Wo/EP/CE increase slightly, while total smoke release decreases about 14% compared with the EP/CE composite containing 10 wt% DOPO (sample 10DO/EP/CE). Thermal studies indicate that the glass transition temperature and temperature at 5% mass loss of sample 7DO/3Wo/EP/CE are higher than that of sample 10DO/EP/CE. Moreover, the mechanical properties of EP/CE composites were investigated.


2020 ◽  
Vol 38 (4) ◽  
pp. 333-347
Author(s):  
Lichen Zhang ◽  
Deqi Yi ◽  
Jianwei Hao

The flame retardant poly(diallyldimethylammonium) and polyphosphate polyelectrolyte complex and the curing agent m-Phenylenediamine were blended into diglycidyl ether of bisphenol A (DGEBA)-type epoxy resin to prepare flame-retardant epoxy resin thermosets. The effects of poly(diallyldimethylammonium) and polyphosphate on fire retardancy and thermal degradation behavior of epoxy resins (EP)/poly(diallyldimethylammonium) and polyphosphate composites were tested by Limiting Oxygen Index, UL-94, cone calorimeter tests, and thermogravimetric analysis and compared with pure EP. The results showed that the Limiting Oxygen Index value of EP/poly(diallyldimethylammonium) and polyphosphate composite could reach 31.9%, and UL-94 V-0 rating at 10 wt% poly(diallyldimethylammonium) and polyphosphate loading. Meanwhile the cone calorimetry peak heat release rate and total heat release were reduced up to 55.2% and 21.8%, respectively; smoke production rate and total smoke production were also declined significantly, compared with those of pure epoxy resins. Poly(diallyldimethylammonium) and polyphosphate played a very good flame-retardant effect on epoxy resins.


2017 ◽  
Vol 35 (2) ◽  
pp. 99-117 ◽  
Author(s):  
Qianqiong Zhao ◽  
Congyan Chen ◽  
Ruilan Fan ◽  
Yong Yuan ◽  
Yalin Xing ◽  
...  

A halogen-free flame retardant containing nitrogen and phosphorus, 2-[anilino-(6-oxobenzo[c][2,1]benzoxaphosphinin-6-yl)methyl]phenol (PDOP), has been synthesized by reaction of benzo[c][2,1]benzoxaphosphinine-6-oxide (DOPO) with 2-( N-phenyliminomethyl)phenol. Halogen-free flame-retardant rigid polyurethane foams (RPUF-PDOP) were prepared using PDOP as a flame retardant. The flammability was investigated using limiting oxygen index, a vertical burning test (UL-94), and a cone calorimeter. When PDOP (10 wt%) as flame retardant was added to RPUF (RPUF-PDOP10%), the limiting oxygen index value was increased from 18% to 27%, and a UL-94 V-0 rating was achieved; meanwhile, the peak heat release rate, total heat release, and the average mass-loss rates of RPUF-PDOP10% were reduced from 246 to 207 kW m−2, from 26.9 to 21.0 MJ/m2, and from 0.043 to 0.033 g/s, respectively. Especially, the initial decomposition temperature of RPUF-PDOP10% was decreased from 228°C to 209°C. The final residual char from decomposition of RPUF-PDOP10% was significantly increased up to 35.6%. The addition of PDOP did not markedly decrease the mechanical properties of the resulting flame-retardant RPUFs.


2017 ◽  
Vol 898 ◽  
pp. 2338-2346
Author(s):  
Zhen Lin Jiang ◽  
Shu Ying Fang ◽  
Hui Ling Xu ◽  
Chao Sheng Wang ◽  
Cheng Chang Ji

Containing phosphorus compound is widely used in the modification of flame retardant polyester due to the excellent flame retardant properties. But it is difficult to solve the droplet problems, especially the polyester fiber. In this paper the copolyesters and fiber with flame retardant and anti-droplet were prepared using reaction containing phosphorus flame retardant [(6-Oxido-6H-dibenz [c, e] [1, 2] oxaphosphorin-6-yl) methyl] butanedioic acid (DDP) and silica sol by in-situ polymerization. The structure and properties of modification flame retardant were measured by nuclear magnetic resonance (NMR), thermal gravity analysis (TGA). The results indicated that the modification flame retardant was more suitable for polymerization. The TGA, limiting oxygen index (LOI), vertical flame test, and scanning electron microscope (SEM) were devoted to discuss the flame retardant properties. It suggested that the nanoSiO2 particles increased char residue, and the nanoSiO2 particles were conducive to the formation of dense stable carbon layer, inhibiting the expansion of the carbon layer to form holes, the nanoSiO2 particles improved the droplet of copolyester. The highest LOI of copolyester is 34.8±0.1%, the UL94 is V-0 grade. The copolyester fiber has excellent mechanical, flame retardant and anti-droplet. This can meet the requirement of household textile decoration and use.


Sign in / Sign up

Export Citation Format

Share Document