scholarly journals The Input Signal Step Function (ISSF), a Standard Method to Encode Input Signals in SBML Models with Software Support, Applied to Circadian Clock Models

2012 ◽  
Vol 27 (4) ◽  
pp. 328-332 ◽  
Author(s):  
R.R. Adams ◽  
N. Tsorman ◽  
K. Stratford ◽  
O.E. Akman ◽  
S. Gilmore ◽  
...  
2013 ◽  
Vol 427-429 ◽  
pp. 1739-1742
Author(s):  
Hai Hong Huang ◽  
Jia Miao ◽  
Hai Xin Wang ◽  
Feng Feng Wang

Based on the grey theory, a novel model is built to predict the input signal of fast control power supply used in Experimental Advanced Superconducting Tokamak (EAST). The model can be used as online metabolic grey filtering and one-step prediction of different input signals. Results of simulation and experiment show that the predicting algorithm based on the grey system model can predict the input signal primarily.


2010 ◽  
Vol 17 (2) ◽  
pp. 299-306
Author(s):  
Adam Żuchowski

On a Certain Class of Expanding Systems The interesting properties of a class of expanding systems are discussed. The operation of the considered systems can be described as follows: the input signal is processed by a linear dynamic converter in subsequent time intervals, each of them is equal to Ti. Processing starts at the moments n · Ti, always after zeroing of converter initial conditions. For smooth input signals and a given transfer function of the converter one can suitably choose Ti and the gain coefficient in order to realize the postulated linear operations on input signals, which is quite different comparing it to the operation realized by the converter. The errors of postulated operations are mainly caused by non-smooth components of the input signal. The principles for choice of system parameters and rules for system optimization are presented in the paper. The referring examples are attached too.


Author(s):  
Alicia Dautt-Silva ◽  
Raymond de Callafon

Abstract The task of trajectory planning for a dual-mirror optical pointing system greatly benefits from carefully designed dynamic input signals. This paper summarizes the application of multivariable input shaping (IS) for a dual-mirror system, starting from initial open-loop step-response data. The optical pointing system presented consists of two Fast Steering Mirrors (FSM) for which dynamically coupled input signals are designed, while adhering to mechanical and input signal constraints. For the solution, the planned trajectories for the dual-mirrors are determined via (inverse) kinematic analysis. A linear program (LP) problem is used to compute the dynamic input signal for each of the FSMs, with one of the mirrors acting as an image motion compensation device that guarantees tracking of a planned trajectory within a specified accuracy and the operating constraints of the FSMs.


2003 ◽  
Vol 55 (395) ◽  
pp. 277-283 ◽  
Author(s):  
A. J. Millar

PLoS Genetics ◽  
2014 ◽  
Vol 10 (4) ◽  
pp. e1004244 ◽  
Author(s):  
Chidambaram Ramanathan ◽  
Haiyan Xu ◽  
Sanjoy K. Khan ◽  
Yang Shen ◽  
Paula J. Gitis ◽  
...  

Information ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 176 ◽  
Author(s):  
Amjad J. Humaidi ◽  
Ibraheem Kasim Ibraheem ◽  
Ahmed R. Ajel

In this paper we introduce a novel adaptation algorithm for adaptive filtering of FIR and IIR digital filters within the context of system identification. The standard LMS algorithm is hybridized with GA (Genetic Algorithm) to obtain a new integrated learning algorithm, namely, LMS-GA. The main aim of the proposed learning tool is to evade local minima, a common problem in standard LMS algorithm and its variants and approaching the global minimum by calculating the optimum parameters of the weights vector when just estimated data are accessible. In the proposed LMS-GA technique, first, it works as the standard LMS algorithm and calculates the optimum filter coefficients that minimize the mean square error, once the standard LMS algorithm gets stuck in local minimum, the LMS-GA switches to GA to update the filter coefficients and explore new region in the search space by applying the cross-over and mutation operators. The proposed LMS-GA is tested under different conditions of the input signal like input signals with colored characteristics, i.e., correlated input signals and investigated on FIR adaptive filter using the power spectral density of the input signal and the Fourier-transform of the input’s correlation matrix. Demonstrations via simulations on system identification of IIR and FIR adaptive digital filters revealed the effectiveness of the proposed LMS-GA under input signals with different characteristics.


2020 ◽  
Vol 48 (19) ◽  
pp. 10691-10701
Author(s):  
Chanjuan Liu ◽  
Yuan Liu ◽  
Enqiang Zhu ◽  
Qiang Zhang ◽  
Xiaopeng Wei ◽  
...  

Abstract Designing biochemical systems that can be effectively used in diverse fields, including diagnostics, molecular computing and nanomachines, has long been recognized as an important goal of molecular programming and DNA nanotechnology. A key issue in the development of such practical devices on the nanoscale lies in the development of biochemical components with information-processing capacity. In this article, we propose a molecular device that utilizes DNA strand displacement networks and allows interactive inhibition between two input signals; thus, it is termed a cross-inhibitor. More specifically, the device supplies each input signal with a processor such that the processing of one input signal will interdict the signal of the other. Biochemical experiments are conducted to analyze the interdiction performance with regard to effectiveness, stability and controllability. To illustrate its feasibility, a biochemical framework grounded in this mechanism is presented to determine the winner of a tic-tac-toe game. Our results highlight the potential for DNA strand displacement cascades to act as signal controllers and event triggers to endow molecular systems with the capability of controlling and detecting events and signals.


2002 ◽  
Vol 17 (6) ◽  
pp. 568-577 ◽  
Author(s):  
Gen Kurosawa ◽  
Yoh Iwasa

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Khalid Abd El Mageed Hag ElAmin

This study focused on the identification problems of two-input single-output system with moving average noises based on unsupervised learning methods applied to the input signals. The input signal to the autoregressive moving average model is proposed to be arriving from a source with continuous technical and environmental changes as two separate featured input signals. These two input signals were grouped in a number of clusters using the K-means clustering algorithm. The clustered input signals were supplied to the model in an orderly fashion from cluster-1 up to cluster-K. To ensure that the output signal can be best predicted from the input signal which in turn leads to selecting good enough model for its intended use, the magnitude-squared coherence (MSC) measure is applied to the input/output signals in the cases of clustered and nonclustered inputs, which indicates best correlation coefficient when measured with clustered inputs. From collected input-output signals, we deduce a K-means clustering based recursive least squares method for estimating the parameter of autoregressive moving average system. The simulation results indicate that the suggested method is effective.


Sign in / Sign up

Export Citation Format

Share Document