Gamma radiation preparation of chitosan nanoparticles for controlled delivery of memantine

2019 ◽  
Vol 34 (8) ◽  
pp. 1150-1162 ◽  
Author(s):  
Rasha R Radwan ◽  
Ashraf M Abdel Ghaffar ◽  
Hussein E Ali

The purpose of the current study is to prepare chitosan nanoparticles by gamma radiation as a new brain delivery system for memantine to improve its therapeutic efficiency. Fourier-transform infrared analysis of chitosan nanoparticles showed the characteristic peaks of chitosan and the reduction of particle size induced by irradiation at doses 10, 20 and 30 kGy. The solubility of chitosan nanoparticles was tested using different solvents and exhibited good solubility in both water and 1% acetic acid than other tested solvents at 80°C. Different formulations containing memantine -loaded chitosan nanoparticles were evaluated for brain targeting on aluminum-induced Alzheimer’s disease in rats. Memory deficit was evaluated using the Morris water maze test. The levels of amyloid-β peptide, tumour necrosis factor alpha, interleukin-1β and interleukin-6 in brain tissues as well as the serum level of brain-derived neurotrophic factor were assayed. Data demonstrated that memantine -loaded chitosan nanoparticles 1:1 transported memantine effectively into the brain compared to free memantine as evidenced by better behaviour performance and biochemical amelioration and confirmed by histopathological examination in Alzheimer’s disease rats. Interestingly, the therapeutic effect of memantine -loaded chitosan nanoparticles 1:1 was superior to memantine -loaded chitosan nanoparticles 1:2 and memantine -loaded chitosan nanoparticles 2:1. Based on these findings, it is reasonable to suggest that memantine -loaded chitosan nanoparticles 1:1 could be a promising approach for Alzheimer’s disease.

2020 ◽  
Vol 19 (8) ◽  
pp. 1643-1651
Author(s):  
Zhenzhen Zhang ◽  
Wenhua Chen ◽  
Jie Luan ◽  
Dagui Chen ◽  
Lina Liu ◽  
...  

Purpose: To study the effect of olibanum essential oil (OEO) on learning and memory in Alzheimer’s disease (AD) mouse.Methods: Mice were administered the 42-amino acid form of amyloid β-peptide (Aβ1-42) to induce AD and then treated with OEO at 150, 300, and 600 mg/kg, p.o. for two weeks. Following treatment, the AD mice were assessed by step-down test (SDT), dark avoidance test (DAT), and Morris water maze test (MWM). Blood and brain tissues were collected for biochemical assessments. Gas chromatographymass spectroscopy was used to analyze the main constituents of OEO.Results: The main constituents of OEO were limonene, α-pinene, and 4-terpineol. Treatment with OEO prolonged t latency in SDT and DAT, but decreased error times. Escape latency decreased and crossing times were rose in the MWM following OEO treatment (p < 0.5). Treatment with OEO also enhanced the acetylcholine levels and decreased the acetylcholinesterase levels in serum and brain tissue (p < 0.5). Additionally, OEO reduced amyloid plaques in the hippocampus and protected hippocampal neurons from damage. Furthermore, OEO decreased c-fos expression in  hippocampus tissues from AD mice (p < 0.5).Conclusion: OEO has significant ameliorative effect AD-induced deterioration in learning and memory in AD mouse induced by Aβ1-42. The mechanisms of these effects are related to increased acetylcholine contents, reduction of amyloid plaques, protection of hippocampal neurons, and downregulation of c-fos in brain tissues. The results justify the need for further investigation of candidate drugs derived from OEO for the  management of AD. Keywords: Olibanum, Essential oil, Learning, Memory, AD


2014 ◽  
Vol 56 ◽  
pp. 99-110 ◽  
Author(s):  
David Allsop ◽  
Jennifer Mayes

One of the hallmarks of AD (Alzheimer's disease) is the formation of senile plaques in the brain, which contain fibrils composed of Aβ (amyloid β-peptide). According to the ‘amyloid cascade’ hypothesis, the aggregation of Aβ initiates a sequence of events leading to the formation of neurofibrillary tangles, neurodegeneration, and on to the main symptom of dementia. However, emphasis has now shifted away from fibrillar forms of Aβ and towards smaller and more soluble ‘oligomers’ as the main culprit in AD. The present chapter commences with a brief introduction to the disease and its current treatment, and then focuses on the formation of Aβ from the APP (amyloid precursor protein), the genetics of early-onset AD, which has provided strong support for the amyloid cascade hypothesis, and then on the development of new drugs aimed at reducing the load of cerebral Aβ, which is still the main hope for providing a more effective treatment for AD in the future.


2018 ◽  
Vol 15 (6) ◽  
pp. 504-510 ◽  
Author(s):  
Sara Sanz-Blasco ◽  
Maria Calvo-Rodríguez ◽  
Erica Caballero ◽  
Monica Garcia-Durillo ◽  
Lucia Nunez ◽  
...  

Objectives: Epidemiological data suggest that non-steroidal anti-inflammatory drugs (NSAIDs) may protect against Alzheimer's disease (AD). Unfortunately, recent trials have failed in providing compelling evidence of neuroprotection. Discussion as to why NSAIDs effectivity is uncertain is ongoing. Possible explanations include the view that NSAIDs and other possible disease-modifying drugs should be provided before the patients develop symptoms of AD or cognitive decline. In addition, NSAID targets for neuroprotection are unclear. Both COX-dependent and independent mechanisms have been proposed, including γ-secretase that cleaves the amyloid precursor protein (APP) and yields amyloid β peptide (Aβ). Methods: We have proposed a neuroprotection mechanism for NSAIDs based on inhibition of mitochondrial Ca2+ overload. Aβ oligomers promote Ca2+ influx and mitochondrial Ca2+ overload leading to neuron cell death. Several non-specific NSAIDs including ibuprofen, sulindac, indomethacin and Rflurbiprofen depolarize mitochondria in the low µM range and prevent mitochondrial Ca2+ overload induced by Aβ oligomers and/or N-methyl-D-aspartate (NMDA). However, at larger concentrations, NSAIDs may collapse mitochondrial potential (ΔΨ) leading to cell death. Results: Accordingly, this mechanism may explain neuroprotection at low concentrations and damage at larger doses, thus providing clues on the failure of promising trials. Perhaps lower NSAID concentrations and/or alternative compounds with larger dynamic ranges should be considered for future trials to provide definitive evidence of neuroprotection against AD.


2021 ◽  
pp. 1-20
Author(s):  
Yang Yu ◽  
Yang Gao ◽  
Bengt Winblad ◽  
Lars Tjernberg ◽  
Sophia Schedin Weiss

Background: Processing of the amyloid-β protein precursor (AβPP) is neurophysiologically important due to the resulting fragments that regulate synapse biology, as well as potentially harmful due to generation of the 42 amino acid long amyloid β-peptide (Aβ 42), which is a key player in Alzheimer’s disease. Objective: Our aim was to clarify the subcellular locations of the amyloidogenic AβPP processing in primary neurons, including the intracellular pools of the immediate substrate, AβPP C-terminal fragment (APP-CTF) and the product (Aβ 42). To overcome the difficulties of resolving these compartments due to their small size, we used super-resolution microscopy. Methods: Mouse primary hippocampal neurons were immunolabelled and imaged by stimulated emission depletion (STED) microscopy, including three-dimensional, three-channel imaging and image analyses. Results: The first (β-secretase) and second (γ-secretase) cleavages of AβPP were localized to functionally and distally distinct compartments. The β-secretase cleavage was observed in early endosomes, where we were able to show that the liberated N- and C-terminal fragments were sorted into distinct vesicles budding from the early endosomes in soma. Lack of colocalization of Aβ 42 and APP-CTF in soma suggested that γ-secretase cleavage occurs in neurites. Indeed, APP-CTF was, in line with Aβ 42 in our previous study, enriched in the presynapse but absent from the postsynapse. In contrast, full-length AβPP was not detected in either the pre- or the postsynaptic side of the synapse. Furthermore, we observed that endogenously produced and endocytosed Aβ 42 were localized in different compartments. Conclusion: These findings provide critical super-resolved insight into amyloidogenic AβPP processing in primary neurons.


Author(s):  
Priyanka Madhu ◽  
Debapriya Das ◽  
Samrat Mukhopadhyay

The accumulation of toxic soluble oligomers of the amyloid-β peptide (Aβ) is a key step in the pathogenesis of Alzheimer’s disease. There are mainly two conformationally distinct oligomers, namely, prefibrillar...


2014 ◽  
Vol 42 (5) ◽  
pp. 1321-1325 ◽  
Author(s):  
Emma C. Phillips ◽  
Cara L. Croft ◽  
Ksenia Kurbatskaya ◽  
Michael J. O’Neill ◽  
Michael L. Hutton ◽  
...  

Increased production of amyloid β-peptide (Aβ) and altered processing of tau in Alzheimer's disease (AD) are associated with synaptic dysfunction, neuronal death and cognitive and behavioural deficits. Neuroinflammation is also a prominent feature of AD brain and considerable evidence indicates that inflammatory events play a significant role in modulating the progression of AD. The role of microglia in AD inflammation has long been acknowledged. Substantial evidence now demonstrates that astrocyte-mediated inflammatory responses also influence pathology development, synapse health and neurodegeneration in AD. Several anti-inflammatory therapies targeting astrocytes show significant benefit in models of disease, particularly with respect to tau-associated neurodegeneration. However, the effectiveness of these approaches is complex, since modulating inflammatory pathways often has opposing effects on the development of tau and amyloid pathology, and is dependent on the precise phenotype and activities of astrocytes in different cellular environments. An increased understanding of interactions between astrocytes and neurons under different conditions is required for the development of safe and effective astrocyte-based therapies for AD and related neurodegenerative diseases.


2020 ◽  
Vol 11 ◽  
Author(s):  
Rita F. Belo ◽  
Margarida L. F. Martins ◽  
Liana Shvachiy ◽  
Tiago Costa-Coelho ◽  
Carolina de Almeida-Borlido ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document