Investigation on the thermal insulation properties of lightweight biocomposites based on lignocellulosic residues and natural polymers

2017 ◽  
Vol 31 (11) ◽  
pp. 1497-1509 ◽  
Author(s):  
Petronela Nechita ◽  
Ştefania Miţa Ionescu

Due to their advantages (low cost, non-toxic, biodegradable, abundant, low density and very good mechanical properties), the lignocellulosic residues were widely used in the last time as reinforcements in composite materials with applications in the building industry. Besides these wastes, expanded perlite (EP) and natural polymers are promising candidates for the building industry, based on their specific characteristics and economic advantages. In this article, the results are presented regarding the thermal insulation properties of composite materials based on EP and natural polymers (starch polymer matrix reinforced with lignocellulosic wastes). The samples of composite materials were obtained from the laboratory and characterized in terms of the main specific properties of building materials, such as thermal conductivity/resistance, water absorption capacity, apparent density and image analyses by scanning electron microscopy. The obtained results have highlighted the values for thermal conductivity of composite samples between 0.05 and 0.11 (W/mK), similar to those materials currently used in building thermal insulation.

2011 ◽  
Vol 250-253 ◽  
pp. 507-512
Author(s):  
Zi Sheng Wang ◽  
Hao Chi Tu ◽  
Jin Xiu Gao ◽  
Guo Dong Qian ◽  
Xian Ping Fan ◽  
...  

Aerogel is regarded as one kind of super thermal insulation materials which could be large-scalely used as building materials. However, the aerogel’s production cost and poor mechanical property limit the its applications. In this paper, we put forward a new low cost way to produce a novel building thermal insulation material: synthesized the aerogel within the expanded perlite’s pores, and using sodium silicate as precursor without adopting supercritical fluid drying and surface modification. The thermal conductivity of expanded perlite was successfully decreased after modified by aerogel.


Proceedings ◽  
2019 ◽  
Vol 34 (1) ◽  
pp. 22
Author(s):  
Bouzit ◽  
Taha

The building sector is one of the largest energy consumers in the world, prompting scientific researchers to find solutions to the problem. The choice of appropriate building materials presents a considerable challenge for improving the thermal comfort of buildings. In this scenario, plaster-based insulating materials have more and more interests and new applications, such as insulating coatings developing the building envelope. Several works are being done to improve energy efficiency in the building sector through the study of building materials with insulation quality and energy savings. In this work, new composite materials, plaster-gypsum with mineral additives are produced and evaluated experimentally to obtain low-cost materials with improved thermo-physical and acoustic properties. The resulting composites are intended for use in building walls. Plaster-gypsum is presented as a high-performance thermal material, and mineral additives are of great importance because of their nature and are environmentally friendly. Measurements of thermal properties are carried and measurements of acoustic properties. The results show that it is possible to improve the thermal and acoustic performance of building material by using plaster as a base material and by incorporating thermal insulators. The thermal conductivity of plaster alone is greater than that of plaster with mineral additives, offer interesting thermal and acoustic performance. By varying the additives, the thermal conductivity changes. Finally, comparing the results, plaster with mineral additives is considered the best building material in this study


2019 ◽  
Vol 279 ◽  
pp. 02010
Author(s):  
Lukáš Bosák ◽  
Milan Palko

Sustainability is currently an important part of the building industry. The development of new building constructions and the use of ecological materials is a very popular topic in this area. One example of organic material are natural fibres bio-composites. Bio-composite materials are currently used in the form of laminates mainly used in the sport and furniture industries. This article addresses their use in the building industry as the outer envelope of buildings. The article deals with the testing of the influence of UV radiation and moisture on the degradation of Bio-composites with recommendation of possible ways of their protection. In the next section, it deals with the design of composite wall panel with Bio-composite laminates on the top layer. This panel will contain mycelium as thermal insulation. The assumption of the use of this type of construction in the building industry is based on the possibility of replacing conventional materials used nowadays and reducing the environmental load by the building industry. The use of new types of eco-friendly building materials is in accordance with the EU strategy.


2011 ◽  
Vol 99-100 ◽  
pp. 1117-1120 ◽  
Author(s):  
Mao Quan Xue

As new building materials, plastic has light weigh, corrosion resistance, low thermal conductivity, thermal insulation, waterproof, energy-saving, molding convenient, high recycling characteristic, widely used in building materials. According to the research of improving its flame retardancy, strength, thermal insulation, waterproof properties, the application of plastic use in doors and windows, pipeline, building walls and roofs of buildings, etc. were reviewed, and the developing direction was discussed.


Author(s):  
Raphaele Malheiro ◽  
Adriana Ansolin ◽  
Christiane Guarnier ◽  
Jorge Fernandes ◽  
Lívia Cosentino ◽  
...  

The building sector plays a significant role in reducing global energy use and carbon emissions. In the European Union (EU), the building stock represents 40% of total energy use and in which cooling and heating systems represent over 50%. Portugal is one of the EU countries where the consequences of energy poverty are most evident due to the families' financial inability to adequately climate their homes. The reasons are several, but they are mainly linked to buildings' poor passive thermal performance, resulting from inadequate adaptation to the climatic context and reduced thermal insulation. Thus, it is necessary to develop solutions to increase buildings’ thermal performance and reduce their potential environmental impact, which arises mainly from the significant use of active systems. In this sense, natural building materials are a promising solution, reducing energy use and carbon emissions related to buildings. This research studies the potential use of reed found in Portugal (Arundo donax) as a thermal insulation material. Its physical characterisation and the influence of geometry configuration on its thermal performance are evaluated. Its durability was studied too. Reed stalks were used to carry out the physical and durability tests. A reed board (150 x 150 mm) was built, and its thermal performance was tested in a hotbox. According to the results, the characteristics of reeds found in Portugal make it suitable to be used as a building material. Furthermore, regardless of the configuration studied, the reeds have a satisfactory thermal performance to be used as thermal insulation, under the requirements defined by Portuguese thermal regulation, Re ≥ 0.30 (m2.oC)/W. There is a trend to the mould growth in the reed, but only under favourable conditions. Additionally, considering the abundance of reed throughout the Portuguese territory, this is an eco-friendly and low-cost option that gathers all requirements to be more used in the construction market.


2002 ◽  
Vol os-11 (4) ◽  
pp. 1558925002OS-01
Author(s):  
Val G. Yachmenev ◽  
Linda Kimmel ◽  
Chris Delhom

Naturally colored cottons do not require chemical dyeing. This offers important processing advantages including less water, chemical and energy consumption. Brown, green, and white (Maxxa) cottons, all from domestic sources, were used to construct needlepunched nonwoven composites. Four different designs representing pure cotton, cotton scrim-reinforced, and Lyocell and Amicor AM-blend constructions were manufactured on laboratory-scale equipment. A Fox 200 Heat Flow Meter was used for measurement of thermal conductivity and thermal transmittance of samples of the nonwoven needlepunched batts. The data show that thermal insulation properties of nonwoven materials made from naturally colored cottons vary significantly, depending on the type of the fibers, design of the nonwoven composites, and the resulting density of the composites.


2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Yu-Yan Sun ◽  
Zhi-Wu Yu ◽  
Zi-Guo Wang

Nacre in abalone shell exhibits high toughness despite the brittle nature of its major constituent (i.e., aragonite). Its specific structure is a major contributor to the energy absorption capacity of nacre. This paper reviews the mechanisms behind the performance of nacre under shear, uniaxial tension, compression, and bending conditions. The remarkable combination of stiffness and toughness on nacre can motivate the development of bioinspired building materials for impact resistance applications, and the possible toughness designs of cement-based and clay-based composite materials with a layered and staggered structure were discussed.


2014 ◽  
Vol 1025-1026 ◽  
pp. 535-538
Author(s):  
Young Sun Jeong

The most basic way to keep comfortable indoor environments for a building’s occupants and save energy for space heating and cooling in residential buildings is to insulate the building envelope. Among the building materials to be used, thermal insulation materials primarily influence thermal performance. In particular, the type, thermal conductivity, density, and thickness of heat insulator, are important factors influencing thermal insulation performance. We investigate the design status of residential buildings which were designed in accordance with the building code of Korea and selected the type of thermal insulation materials applied to the walls of buildings. The present study aims at measuring the thermal conductivity of thermal insulation materials used for building walls of residential buildings. In this study, after collecting the design documents of 129 residential buildings, we investigated the type and thickness of insulation materials on the exterior wall specified in the design documents. As the thermal insulation materials, extruded polystyrene (XPS) board and expanded polystyrene(EPS) board are used the most widely in Korea when designing residential buildings. The thickness of thermal insulation materials applied to the exterior wall was 70mm, most frequently applied to the design. We measured the thermal conductivity and the density of XPS board and EPS board. When the density of XPS and EPS was 30~35 kg/㎥, the thermal conductivity of XPS was 0.0292 W/mK and it of EPS was 0.0316 W/mK.


2015 ◽  
Vol 768 ◽  
pp. 369-374
Author(s):  
Su Gai Cao ◽  
Pei Xin Li ◽  
Feng Qing Zhao ◽  
Zhi Guo Zhang

In this paper, ecotype cementing materials (with steel slag, mineral slag etc. as the main raw materials), waste aerated concrete, regeneration light sand and etc. were used as the main materials to prepare thermal insulation masonry mortar. Then the impacts of materials on the mortar’s performances such as strength, density and thermal conductivity were analyzed. At last, it obtained the optimal mixture ratio to prepare thermal insulation masonry mortar with a strength degree of M5. This kind of mortar used a lot of solid wastes as raw materials but with many advantages such as light weight, low thermal conductivity and low cost, all of this made it became a new environmental friendly thermal insulation masonry mortar.


2020 ◽  
Vol 17 (4) ◽  
pp. 543-551
Author(s):  
Payman Sahbah Ahmed ◽  
Manar Nazar Ahmed ◽  
Samal Osman Saied

Purpose The purpose of this research is using materials to improve the thermal insulation, and reducing the cost. A large amount of energy is consumed by masonary due to cooling and heating. Adding material with certain percentages to the building materials is one of the ways to improve the thermal insulation, and these additives should keep as much as possible the mechanical properties of the building materials. Carbon additives are one of commonly used materials to masonry materials. In spite of the many advantages of using carbon fibers and carbon nano tubes (CNTs) to the cementitious materials, they are very expansive and their thermal conductivity is high. Design/methodology/approach In this research charcoal (which is a product of burning process) with very low thermal conductivity and cost in the form of micro particles will be used with mortar and compared with short carbon fibers and multiwall carbon nanotubes (MWCNTs) via thermal conductivity, density and compressive strength tests. This research includes also an effort to build a model of building to evaluate the thermal insulation of the materials used in the practical part. The main building design and performance simulation tool in this research is DesignBuilder. Findings Results showed that adding micro charcoal particles to mortar resulted in improving the thermal insulation and decrease the rate of reduction in the compressive strength compared to other additives, while adding short carbon fibers resulted in improving the thermal insulation and decrease the compressive strength. Adding MWCNT to the mortar had a negative effect on mechanical and physical properties, i.e. compressive strength, density and thermal insulation. Originality/value This paper uses DesignBuilder software to design a model of building made from the materials used in the practical part to predict and evaluate the thermal insulation.


Sign in / Sign up

Export Citation Format

Share Document