Thermal properties and degradability of low density polyethylene microcrystalline cellulose composites

2018 ◽  
Vol 32 (4) ◽  
pp. 487-500 ◽  
Author(s):  
Yousef Ahmad Mubarak ◽  
Raghda Talal Abdulsamad

The effect of microcrystalline cellulose (MCC) on the thermal properties (melting and crystallization temperatures and percentage crystallinity) and degradation of low density polyethylene (LDPE)–MCC blends were investigated. Weight percentages of MCC were varied at 0, 0.5, 1, 2.5, 5, 10, 20, and 30 wt%. The thermal properties of the composites were studied using differential scanning calorimetry while the degradation test was carried out using soil burial method; the weight loss of LDPE/MCC composites was measured and analyzed over a period of 120 days. It has been found that the addition of MCC to LDPE increased the crystallization temperature from 99°C to 103.5°C and decreased the melting temperature from 117°C to 113.6°C. A rule of a nucleating agent has been given as an interpretation to this increase in the crystallization temperature and intensity of crystals by the increase of MCC content. The dramatic reduction was in the percentage crystallinity where the value reduced from 58% for neat LDPE to about 11% for LDPE/30 wt% MCC. On the other hand, the addition of MCC has a little effect on degradation of LDPE; the weight loss did not exceed 1.5% over a period of 120 days. It seems that even at high MCC concentration, LDPE long carbon chains restrict and increase the resistance to microorganism attack and hence, reduce the hydrolysis and degradability.

2016 ◽  
Vol 36 (3) ◽  
pp. 245-252 ◽  
Author(s):  
Samira Sahi ◽  
Hocine Djidjelli ◽  
Amar Boukerrou

Abstract This paper illustrates the aim to introduce biodegradable vegetable filler in synthetic polymers to prepare novel biodegradable composites. Low density polyethylene/alkali treated corn flour (LDPE/ATCF) composites were prepared by reactive extrusion using a twin-screw extruder. The microstructure, thermal properties and tensile properties were evaluated and compared with virgin LDPE. The Fourier transform infrared (FTIR) spectra showed a decrease in the hydrophilic nature of corn flour (CF) after alkali treatment. Scanning electron microscopy (SEM) micrographs showed good dispersion between matrix and filler. The tensile and elongation at break decreased by increasing the filler content in the composites. However, the Young’s modulus increased with the increase in filler content. The biodegradation of composites was studied in the environment using the soil burial test for 6 months. Differential scanning calorimetry (DSC) analysis showed an increase of the melting enthalpy (ΔHm) and crystallinity of LDPE with evidence of degradation. The biodegradability of the composites was enhanced with increasing ATCF content in the matrix. This result was supported by weight loss and degraded surface of composites observed through morphological studies. From the results, we conclude that the use of ATCF as filler in LDPE reduces pollution problems. This is advantageous for both the economy and the environment.


2013 ◽  
Vol 795 ◽  
pp. 433-437 ◽  
Author(s):  
S.T. Sam ◽  
N.Z. Noriman ◽  
S. Ragunathan ◽  
O.H. Lin ◽  
H. Ismail

Soya spent powder as an inexpensive and renewable source has been used as a filler for linear-low density polyethylene (LLDPE) in this study. Linear-low density polyethylene (LLDPE)/soya spent powder composites were prepared by using Haake internal mixer. The mixing time was 10 minutes at 150°C with rotor speed 50 rpm. Epoxidised natural rubber (ENR 50) has been used as a compatibilizer in the present study. The thermal properties of the LLDPE/soya spent powder composites with and without ENR were studied with a differential scanning calorimetry (DSC). The crystallinity of the LLDPE/soya spent powder composites decreased with increasing soya spent powder content. However, the addition of ENR 50 as a compatibilizer increased the crystallinity of the LLDPE/soya spent powder composites.


2015 ◽  
Vol 815 ◽  
pp. 9-13
Author(s):  
P. Santhiya ◽  
S.T. Sam ◽  
H. Kamarudin ◽  
S. Ragunathan ◽  
N.Z. Noriman ◽  
...  

The effects of adding hexanedioic acid (HA) into low density polyethylene (LDPE)/jackfruit seeds (JSF) blends on the properties were investigated by using differential scanning calorimetry (DSC). The influence of the crystallinity and thermal properties of HA on LDPE at various compositions was investigated. JSF was blended with LDPE by using internal mixer (Brabender) at temperature 150°C. JSF content was varied from 0 to 20 wt%. Crystallinity of the blends was significantly reduced with increasing JSF content and further increased with the presence of HA. Therefore, the crystallinity of the blends was improved with the presence of HA.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Dan Cheng ◽  
Xiucheng Zhang ◽  
Siyu Wang ◽  
Lihua Liu

Four-needle zinc oxide whisker (T-ZnOw) incorporated into microcrystalline cellulose/maleic anhydride grafted polypropylene/random copolymer polypropylene (MCC/PP-g-MA/rPP) composite was prepared by melt blending. 5 wt% PP-g-MA was used as a coupling agent to improve the interfacial compatibility between fillers and rPP. The effect of T-ZnOw on MCC/PP-g-MA/rPP composite was investigated by mechanical testing, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Addition of T-ZnOw enhanced the mechanical properties of composites with tensile and flexural strengths increasing by 10% and 6%, respectively. SEM studies showed an improvement in the compatibility of fracture surfaces, which was evident from the absence of gaps between fillers and rPP. Additionally, initial thermal decomposition temperature and maximum weight loss temperature of T-ZnOw/MCC/PP-g-MA/rPP composite were both higher than those of MCC/PP-g-MA/rPP composite. Thermal degradation kinetics suggested that T-ZnOw has a weak catalytic effect on MCC, resulting in the early degradation of MCC and adhesion to the surface of rPP. Because of the presence of inorganic whiskers, the remaining weight percent was more than that of other composites at the end of the reaction. Crystallization temperature of the T-ZnOw/MCC/PP-g-MA/rPP composite was almost 3~5°C higher than that of MCC/PP-g-MA/rPP composite and close to the crystallization temperature of pure rPP.


e-Polymers ◽  
2009 ◽  
Vol 9 (1) ◽  
Author(s):  
Bahareh Baghaei ◽  
Seyed Hassan Jafari ◽  
Hossein Ali Khonakdar ◽  
Ladan Ashabi

AbstractThermal behaviour of low-density polyethylene (LDPE)/ ethylene-octene copolymer (POE)/ organo-montmorillonite (org-MMT) nanocomposites, prepared via melt compounding were studied by means of differential scanning calorimetry (DSC), thermogravimetry analysis (TGA) and dynamic mechanical thermal analysis (DMTA) techniques. These nanocomposites showed different levels of intercalated structures depending on clay content, blend composition and compatibilization. Addition of polyethylene grafted maleic anhydride (PE-g-MA), as a compatibilizer, improved the intercalation process. The nanocomposites with 5% org-MMT and 5% PE-g-MA showed improved storage modulus and thermal stability in dynamic mechanical and thermal analysis, respectively. The degradation trends of nanocomposites were almost similar to the neat blends in nitrogen environment, but in air atmosphere thermal stability of the nanocomposites increased. The DSC results showed that the org-MMT layers dispersed in the nanocomposites could act as nucleation agents for the crystallization of the LDPE matrix. The results indicated that clay dispersion and interfacial adhesion, and consequently thermal properties of nanocomposites, are greatly affected by addition of PE-g-MA.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 8648-8661
Author(s):  
Ai Ling Pang ◽  
Agus Arsad ◽  
Mohsen Ahmadipour ◽  
Hanafi Ismail ◽  
Azhar Abu Bakar

In recent decades, natural fibers have become widely used with petroleum based polymers such as polyethylene (PE) and polypropylene (PP) because of their light weight, lower cost, and inherent biodegradability. In the present work, linear low-density polyethylene/polyvinyl alcohol (LLDPE/PVOH) composites with untreated kenaf and silane-treated kenaf at filler loadings of 0, 10, and 40 phr were prepared via the melt mixing process. The soil burial test was used to evaluate the degradability of the composites for different durations (90 and 180 d). The tensile properties, surface morphology, chemical composition, percentage of weight loss, and crystallinity of the composites before and after degradation were evaluated. With increased kenaf loading and soil burial duration, all the composites showed a decrease in tensile properties. This was further confirmed by the changes in surface morphology and chemical structure of the buried composites. The increase in weight loss percentage and crystallinity after soil burial indicated that the longer burial duration had increased the degradation of composites. Composites with silane-treated kenaf exhibited lower degradability than that of composites with untreated kenaf after being buried for 90 and 180 d. This may be attributed to the improved adhesion of kenaf to the LLDPE/PVOH matrix via silane treatment.


2009 ◽  
Vol 34 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Souad Djellalia ◽  
Nassima Benmahmoud ◽  
Tahar Sadoun

Sign in / Sign up

Export Citation Format

Share Document