Immunohistochemical Localization of Signal Transduction Pathways During Amelogenesis: an Initial Exploration

1996 ◽  
Vol 10 (2) ◽  
pp. 105-110 ◽  
Author(s):  
J.W. Bawden ◽  
R.A. Moran ◽  
T.G. Deaton ◽  
C.M. Saour

This study was undertaken to map signal transduction pathway (STP) components uniquely associated with the four major receptor groups and their related STPs in association with the events involved in amelogenesis in the rat. Whole-head, freeze-dried sagittal sections were obtained at the level of the maxillary first molars and picked up on transparent adhesive tape. The sections were not decalcified or fixed, providing optimum conditions for immunohistochemical (IHC) localization. Antibodies to pathway components Gsa, Giα, Gqα, Sos-1, Grb-2, p125Fak, Jak2, and Vav were localized. The respective patterns of localization indicate that the G a-linked, the receptor tyrosine kinase-initiated, and the integrin receptor-initiated pathways are involved in the proliferating pre-ameloblast cells. In the differentiating and differentiated ameloblasts, the Gsa-linked cAMP pathway is involved, apparently reading a factor(s) released by the dentin matrix. The G a-linked, the receptor tyrosine kinase-initiated, the integrin receptor-initiated, and the cytokine receptor-initiated pathways are also up-regulated in the proximal ends of the ameloblasts. These observations indicate that all four of the major receptor groups are involved in amelogenesis and that the role of classes of ligands not previously implicated in enamel formation must now be considered. It seems that the cells of the enamel organ respond to the appearance and disappearance of autocrine and paracrine growth factors, but they also up-regulate specific STPs to enable them to respond to circulating hormones and growth factors whose concentrations in the extracellular fluids remain relatively constant.

Genetics ◽  
1998 ◽  
Vol 149 (4) ◽  
pp. 1809-1822 ◽  
Author(s):  
Dave Jacobs ◽  
Greg J Beitel ◽  
Scott G Clark ◽  
H Robert Horvitz ◽  
Kerry Kornfeld

Abstract Genetic analysis of lin-1 loss-of-function mutations suggests that lin-1 controls multiple cell-fate decisions during Caenorhabditis elegans development and is negatively regulated by a conserved receptor tyrosine kinase-Ras-ERK mitogen-activated protein (MAP) kinase signal transduction pathway. LIN-1 protein contains an ETS domain and presumably regulates transcription. We identified and characterized six gain-of-function mutations that define a new class of lin-1 allele. These lin-1 alleles appeared to be constitutively active and unresponsive to negative regulation. Each allele has a single-base change that affects the predicted C terminus of LIN-1, suggesting this region is required for negative regulation. The C terminus of LIN-1 was a high-affinity substrate for Erk2 in vitro, suggesting that LIN-1 is directly regulated by ERK MAP kinase. Because mpk-1 ERK MAP kinase controls at least one cell-fate decision that does not require lin-1, our results suggest that MPK-1 contributes to the specificity of this receptor tyrosine kinase-Ras-MAP kinase signal transduction pathway by phosphorylating different proteins in different developmental contexts. These lin-1 mutations all affect a four-amino-acid motif, FQFP, that is conserved in vertebrate and Drosophila ETS proteins that are also phosphorylated by ERK MAP kinase. This sequence may be a substrate recognition motif for the ERK subfamily of MAP kinases.


1995 ◽  
Vol 73 (3-4) ◽  
pp. 133-136 ◽  
Author(s):  
Haleh Vahidi Samiei

Many laboratories, using a variety of organisms, have contributed to deciphering the identity and the order of the components leading from ligand-bound receptor tyrosine kinases to various intracellular events, including changes in gene expression. The gaps have only been filled recently. This minireview summarizes the findings and points out the degree of conservation of the same pathway in distant organisms, both at the molecular level and in terms of the consecutive steps. The review also looks at points at which this pathway might be diverging and points onto which other pathways might be converging. These interactions are not always clear cut, and understanding them will be the challenge for the future.Key words: signal transduction, receptor tyrosine kinase, RAS, RAF, MAP kinase.


Sign in / Sign up

Export Citation Format

Share Document