Aspirin Protected the Nitric Oxide/Cyclic Gmp Generating System in Human Peritoneum

2001 ◽  
Vol 21 (3_suppl) ◽  
pp. 48-53 ◽  
Author(s):  
Maria M. Arriero ◽  
Angel Celdran ◽  
Petra Jimenez ◽  
Antonio García–Mendez ◽  
Juan C. De La Pinta ◽  
...  

♦ Objective Changes in the expression of endothelial nitric oxide synthase (eNOS) in the peritoneum could be involved in the peritoneal dysfunction associated with peritoneal inflammation. The aim of the present study was to analyze the effect of Escherichia coli lipopolysaccharide (LPS) on eNOS expression in samples of human peritoneum. The effect of aspirin, a drug with anti-inflammatory properties, was also determined. ♦ Results The eNOS protein expressed in human peritoneal tissue was reduced by LPS (10 μg/mL) in a time-dependent manner. The eNOS was expressed mainly in capillary endothelial cells and mesothelial cells. Anti-inflammatory doses of aspirin (1 – 10 mmol/L) restored eNOS expression in LPS-stimulated human peritoneal tissue samples. The main intracellular receptor of NO, soluble guanylate cyclase (sGC), was also downregulated by LPS. This effect was prevented by aspirin (5 mmol/L). ♦ Conclusion Protein expression of the eNOS–sGC system in the peritoneal tissue was downregulated by LPS. High doses of aspirin protected both eNOS protein expression and sGC in human peritoneum. These findings suggest a new mechanism of action of aspirin that could be involved in the prevention of peritoneal dysfunction during inflammation.

1999 ◽  
Vol 277 (4) ◽  
pp. H1317-H1325 ◽  
Author(s):  
Trinidad de Frutos ◽  
Lourdes Sánchez de Miguel ◽  
Margarita García-Durán ◽  
Fernando González-Fernández ◽  
Juan A. Rodríguez-Feo ◽  
...  

Despite the evidence that cytokines stimulate nitric oxide (NO) production by inducible nitric oxide synthase (iNOS), several reports recently demonstrated that the hypotensive response related to endothelial nitric oxide synthase (eNOS) activity could be inhibited by the same cytokines. The aim of the present work was to analyze whether NO generated by vascular smooth muscle cells (VSMC) could modify eNOS protein expression in endothelial cells. Bovine aortic endothelial cells (BAEC) and bovine VSMC (BVSMC) in coculture were used for the study. Interleukin-1β (IL-1β, 10 ng/ml)-treated BVSMC, which expressed iNOS protein, decreased eNOS protein expression in BAEC. The presence of NO antagonists N ω-nitro-l-arginine methyl ester (10−3 mol/l) or N G-monomethyl-l-arginine (10−3 mol/l) prevented the decrease in eNOS protein expression induced by IL-1β-treated BVSMC. Surprisingly, two different NO donors, 3-morpholinosydnonimine (10−4 mol/l) and S-nitroso- N-acetyl-d,l-penicillamine (10−4 mol/l), failed to modify eNOS expression in BAEC, suggesting the existence of a diffusible mediator released from IL-1β-treated BVSMC that acts on endothelial cells by reducing eNOS expression. The presence of NO antagonists reduced tumor necrosis factor-α (TNF-α) production by IL-1β-stimulated BVSMC. This effect was also produced in the presence of a protein kinase G inhibitor, guanosine-5′-O-(2-thiodiphosphate) trilithium salt. A polyclonal antibody against TNF-α prevented eNOS expression in the BAEC-BVSMC coculture. In conclusion, NO by itself failed to modify eNOS protein expression in endothelial cells but increased TNF-α generation by IL-1β-stimulated BVSMC and, in this way, reduced eNOS expression in the endothelium.


1996 ◽  
Vol 270 (4) ◽  
pp. L643-L649 ◽  
Author(s):  
A. J. North ◽  
K. S. Lau ◽  
T. S. Brannon ◽  
L. C. Wu ◽  
L. B. Wells ◽  
...  

Nitric oxide (NO) is critically involved in oxygen-mediated pulmonary vasodilatation in the fetus and newborn. We determined the effects of prolonged alterations in oxygenation on endothelial NO synthase (eNOS) gene expression in early passage ovine fetal intrapulmonary artery endothelial cells (PAEC). PAEC were exposed to PO2 = 50 or 150 mmHg for 48 h, and eNOS protein expression was evaluated by immunoblot analysis. eNOS protein expression was 2.7-fold greater at higher oxygen tension; eNOS upregulation was also evident after 24 h. Inducible NOS protein was not detectable by immunoblot at either level of oxygenation. In the lung, the effect of oxygen on eNOS expression may be specific to the endothelium, as eNOS expression in bronchiolar epithelial cells of Clara cell lineage was not altered by varying oxygen tension. The oxygen-related increase in eNOS protein in the fetal PAEC was associated with 2.5-fold greater NOS enzymatic activity. In parallel, there was a 2.8-fold rise in eNOS mRNA abundance. Thus eNOS gene expression in ovine fetal PAEC is upregulated by oxygen, and this is mediated at the level of gene transcription or mRNA stability. This process may play an important role in oxygen modulation of pulmonary vasomotor tone in the fetus and newborn.


2002 ◽  
Vol 283 (3) ◽  
pp. H1208-H1214 ◽  
Author(s):  
Axel Linke ◽  
Wei Li ◽  
Harer Huang ◽  
Ziping Wang ◽  
Thomas H. Hintze

We assessed whether pregnancy results in enhanced nitric oxide (NO)-mediated control of myocardial oxygen consumption. Rats were studied before (C), at 1 wk (1w) or 2 wk (2w) of pregnancy, and at 4 days after giving birth (−4d). Left ventricular endothelial NO synthase (eNOS) protein expression was determined by immunoblotting. Oxygen consumption of left ventricular tissue samples was measured in vitro in response to increasing doses of bradykinin with or without addition of the NOS inhibitor N G-nitro-l-arginine methyl ester (l-NAME). Echocardiography indicated an increased cardiac output during pregnancy. Myocardial eNOS protein expression significantly increased by 46 ± 9 and 39 ± 8% at 1w and 2w, respectively, and returned to control levels at −4d. Bradykinin (10−4 M) decreased cardiac oxygen consumption in a NO-dependent manner by 17 ± 2% at C, by 21 ± 2% at 1w, by 24 ± 2% at 2w ( P < 0.05 vs. C and −4d), and by 18 ± 1% at −4d. Myocardial eNOS protein expression is transiently increased during pregnancy in rats, and this increase is associated with enhanced NO-dependent control of myocardial oxygen consumption at a time when cardiac output is increased.


2000 ◽  
Vol 278 (1) ◽  
pp. L202-L208 ◽  
Author(s):  
Thomas A. Parker ◽  
Timothy D. le Cras ◽  
John P. Kinsella ◽  
Steven H. Abman

Endothelial nitric oxide (NO) synthase (eNOS) produces NO, which contributes to vascular reactivity in the fetal lung. Pulmonary vasoreactivity develops during late gestation in the ovine fetal lung, during the period of rapid capillary and alveolar growth. Although eNOS expression peaks near birth in the fetal rat, lung capillary and distal air space development occur much later than in the fetal lamb. To determine whether lung eNOS expression in the lamb differs from the timing and pattern reported in the rat, we measured eNOS mRNA and protein by Northern and Western blot analyses and NOS activity by the arginine-to-citrulline conversion assay in lung tissue from fetal, newborn, and maternal sheep. Cellular localization of eNOS expression was determined by immunohistochemistry. eNOS mRNA, protein, and activity were detected in samples from all ages, and eNOS was expressed predominantly in the vascular endothelium. Lung eNOS mRNA expression increases from low levels at 70 days gestation to peak at 113 days and remains high for the rest of fetal life. Newborn eNOS mRNA expression does not change from fetal levels but is lower in the adult ewe. Lung eNOS protein expression in the fetus rises and peaks at 118 days gestation but decreases before birth. eNOS protein expression rises in the newborn period but is lower in the adult. Lung NOS activity also peaks at 118 days gestation in the fetus before falling in late gestation and remaining low in the newborn and adult. We conclude that the pattern of lung eNOS expression in the sheep differs from that in the rat and may reflect species-related differences in lung development. We speculate that the rise in fetal lung eNOS may contribute to the marked lung growth and angiogenesis that occurs during the same period of time.


1992 ◽  
Vol 263 (6) ◽  
pp. F1020-F1025 ◽  
Author(s):  
R. M. Edwards ◽  
M. Pullen ◽  
P. Nambi

The effects of endothelins (ET) on guanosine 3',5'-cyclic monophosphate (cGMP) levels in intact rat glomeruli were examined. ET-3 produced a rapid approximately fivefold increase in cGMP levels with the maximum effect occurring at 1 min. The ET-3-induced increase in cGMP accumulation occurred in the absence and presence of 3-isobutyl-1-methylxanthine. ET-1, ET-2, ET-3, and the structurally related toxin, sarafotoxin S6c, all increased glomerular cGMP levels in a concentration-dependent manner and with similar potencies (EC50 approximately 15-30 nM). The L-arginine analogue, N omega-nitro-L-arginine (L-NNA), reduced basal levels of cGMP and also totally inhibited ET-induced increases in cGMP as did methylene blue, an inhibitor of soluble guanylate cyclase. The effect of L-NNA was attenuated by L-arginine but not by D-arginine. The stimulation of cGMP accumulation by ET-3 was dependent on extracellular Ca2+ and was additive to atriopeptin III but not to acetylcholine. The ETA-selective antagonist, BQ 123, had no effect on ET-3-induced formation of cGMP. Glomerular membranes displayed high-affinity (Kd = 130-150 pM) and high-density (approximately 2.0 pmol/mg) binding sites for 125I-ET-1 and 125I-ET-3. ET-1, ET-3, and sarafotoxin S6c displaced 125I-ET-1 binding to glomerular membranes with similar affinities. BQ 123 had no effect on 125I-ET-1 binding. We conclude that ET increases cGMP levels in glomeruli by stimulating the formation of a nitric oxide-like factor that activates soluble guanylate cyclase. This effect of ET appears to be mediated by activation of ETB receptors and may serve to modulate the contractile effects of ET.


2007 ◽  
Vol 75 (9) ◽  
pp. 4305-4315 ◽  
Author(s):  
Rupesh Chaturvedi ◽  
Mohammad Asim ◽  
Nuruddeen D. Lewis ◽  
Holly M. Scott Algood ◽  
Timothy L. Cover ◽  
...  

ABSTRACT Helicobacter pylori infection of the stomach causes an active immune response that includes stimulation of inducible nitric oxide (NO) synthase (iNOS) expression. Although NO can kill H. pylori, the bacterium persists indefinitely, suggesting that NO production is inadequate. We determined if the NO derived from iNOS in macrophages was dependent on the availability of its substrate, l-arginine (l-Arg). Production of NO by H. pylori-stimulated RAW 264.7 cells was dependent on the l-Arg concentration in the culture medium, and the 50% effective dose for l-Arg was 220 μM, which is above reported plasma l-Arg levels. While iNOS mRNA induction was l-Arg independent, iNOS protein increased in an l-Arg-dependent manner that did not involve changes in iNOS protein degradation. l-Lysine, an inhibitor of l-Arg uptake, attenuated H. pylori-stimulated iNOS protein expression, translation, NO levels, and killing of H. pylori. While l-Arg starvation suppressed global protein translation, at concentrations of l-Arg at which iNOS protein was only minimally expressed in response to H. pylori, global translation was fully restored and eukaryotic translation initiation factor α was dephosphorylated. H. pylori lacking the gene rocF, which codes for a bacterial arginase, induced higher levels of NO production by increasing iNOS protein levels. When murine gastric macrophages were activated with H. pylori, supraphysiologic levels of l-Arg were required to permit iNOS protein expression and NO production. These findings indicate that l-Arg is rate limiting for iNOS translation and suggest that the levels of l-Arg that occur in vivo do not permit sufficient NO generation by the host to kill H. pylori.


2018 ◽  
Vol 46 (06) ◽  
pp. 1281-1296 ◽  
Author(s):  
Sang Yun Han ◽  
Young-Su Yi ◽  
Seong-Gu Jeong ◽  
Yo Han Hong ◽  
Kang Jun Choi ◽  
...  

Lilium bulbs have long been used as Chinese traditional medicines to alleviate the symptoms of various human inflammatory diseases. However, mechanisms of Lilium bulb-mediated anti-inflammatory activity and the bioactive components in Lilium bulbs remain unknown. In the present study, the anti-inflammatory activity of Lilium bulbs and the underlying mechanism of action were investigated in macrophages using Lilium bulb ethanol extracts (Lb-EE). In a dose-dependent manner, Lb-EE inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and bone marrow-derived macrophages (BMDMs) without causing significant cytotoxicity. Lb-EE also down-regulated mRNA expression of inflammatory genes in LPS-stimulated RAW264.7 cells, which included inducuble nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), and tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text]). Furthermore, Lb-EE markedly restored LPS-induced morphological changes in RAW264.7 cells to a normal morphology. HPLC analysis identified quercetin, luteolin, and kaempferol as bioactive components contained in Lb-EE. Mechanistic studies in LPS-stimulated RAW264.7 cells revealed that Lb-EE suppressed MyD88- and TRIF-induced NF-[Formula: see text]B transcriptional activation and the nuclear translocation of NF-[Formula: see text]B transcription factors. Moreover, Lb-EE inhibited IKK[Formula: see text]/[Formula: see text]-induced activation of the NF-[Formula: see text]B signaling pathway and IKK inhibition significantly reduced NO production in LPS-stimulated RAW264.7 cells. Taken together, these results suggest that Lb-EE plays an anti-inflammatory role by targeting IKK[Formula: see text]/[Formula: see text]-mediated activation of the NF-[Formula: see text]B signaling pathway during macrophage-mediated inflammatory responses.


2001 ◽  
Vol 280 (5) ◽  
pp. R1269-R1275 ◽  
Author(s):  
Michael J. Solhaug ◽  
Usa Kullaprawithaya ◽  
Xui Q. Dong ◽  
Ke-Wen Dong

The postnatal pattern of renal endothelial nitric oxide synthase (eNOS) is unknown. The purpose of this study was to characterize eNOS expression during maturation and compare this to neuronal NOS (nNOS). The experiments measured whole kidney eNOS mRNA expression by RT-PCR and protein content by Western blot, as well as cortical and medullary protein content in piglets at selected postnatal ages and in adult pigs. Whole kidney eNOS mRNA was compared with nNOS. Whole kidney eNOS expression decreased from the newborn to its lowest at 7 days, returning by 14 days to adult levels. This eNOS mRNA pattern contrasted with nNOS, which was highest at birth, and progressively decreased to its lowest level in the adult. At birth, cortical eNOS protein was greater than medullary, contrasting with the adult pattern of equivalent levels. In conclusion eNOS is developmentally regulated during early renal maturation and may critically participate in renal function during this period. The eNOS developmental pattern differs from nNOS, suggesting that these isoforms may have different regulatory factors and functional contributions in the postnatal kidney.


1997 ◽  
Vol 272 (5) ◽  
pp. L1005-L1012 ◽  
Author(s):  
P. W. Shaul ◽  
I. S. Yuhanna ◽  
Z. German ◽  
Z. Chen ◽  
R. H. Steinhorn ◽  
...  

Nitric oxide (NO), produced by endothelial (e) NO synthase (NOS), is critically involved in the cardiopulmonary transition from fetal to neonatal life. We have previously shown that NO-dependent relaxation is attenuated in intrapulmonary arteries from fetal lambs with pulmonary hypertension (PHT) created by prenatal ligation of the ductus arteriosus. In the present study, we determined whether this is due to altered pulmonary eNOS expression. eNOS and neuronal NOS (nNOS) protein expression were assessed in lungs from near-term control lambs and PHT lambs that underwent ductal ligation 10 days earlier. eNOS protein expression was decreased 49% in PHT lung. In contrast, nNOS protein abundance was unchanged. NOS enzymatic activity was also diminished in PHT vs. control lung (60 +/- 3 vs. 110 +/- 7 fmol.mg protein-1.min-1, respectively). Paralleling the declines in eNOS protein and NOS enzymatic activity, eNOS mRNA abundance was decreased 64% in PHT lung. Thus pulmonary eNOS gene expression is attenuated in the lamb model of fetal PHT. Because NO modulates both vasodilation and vascular smooth muscle growth, diminished eNOS expression may contribute to both the abnormal vasoreactivity and the excessive muscularization of the pulmonary circulation in fetal PHT.


Sign in / Sign up

Export Citation Format

Share Document