EndothelinB Receptor Blocker Inhibits High Glucose-Induced Synthesis of Fibronectin in Human Peritoneal Mesothelial Cells

2006 ◽  
Vol 26 (3) ◽  
pp. 393-401 ◽  
Author(s):  
Miyuki Shimizu ◽  
Yoshitaka Ishibashi ◽  
Fumika Taki ◽  
Hideki Shimizu ◽  
Ichiro Hirahara ◽  
...  

Background Long-term peritoneal dialysis using glucose-based dialysates is associated with peritoneal fibrosis. The object of this study was to investigate the hypothesis that endothelin (ET)-1, which is known to play an important role in various fibrotic diseases, may also be involved in peritoneal fibrosis using human peritoneal mesothelial cells (HPMC). Methods HPMC were cultured with 4% d- or l-glucose, or loaded with 10 nmol/L ET-1. In some experiments, the ETA receptor antagonist BQ-123, the ETB receptor antagonist BQ-788, and antioxidants 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL) and diphenyleneiodium chloride (DPI) were used. mRNA expression of ET-1, ETA receptor, ETB receptor, and fibronectin (FN) was analyzed by real-time polymerase chain reaction (real-time PCR). The protein levels for FN and ET-1 were measured by ELISA. CM-H2DCFDA-sensitive reactive oxygen species (ROS) were evaluated by flow cytometry. Results d-Glucose significantly induced mRNA expression of ET-1 and the ETB receptor but not the ETA receptor. FN production under high glucose conditions was inhibited by BQ-788. ET-1 directly stimulated HPMC to increase mRNA expression of FN and CM-H2DCFDA-sensitive ROS production. BQ-788, TEMPOL, and DPI inhibited mRNA expression of FN induced by ET-1. Conclusion The present study suggests that high-glucose-induced FN synthesis is mediated by the ET-1/ETB receptor pathway and, therefore, an ETB receptor antagonist may be useful in preventing FN production in HPMC.

1999 ◽  
Vol 19 (3) ◽  
pp. 221-230 ◽  
Author(s):  
Duk-Hee Kang ◽  
Young-Sook Hong ◽  
Hyun Joung Lim ◽  
Jin-Hee Choi ◽  
Dae-Suk Han ◽  
...  

Objective To investigate the effect of high glucose and spent peritoneal dialysate on the transforming growth factor-β1 (TGFβ1) synthesis of cultured human peritoneal mesothelial cells (HPMCs) and to examine the effect of costimulation with high glucose or spent dialysate, and cytokines, interleukin-1β (IL-1β), and tumor necrosis factor-α (TNFα) on TGFβ1 synthesis of HPMCs. Design HPMCs were exposed to different concentrations of glucose (30, 60, and 90 mmol/L) or spent peritoneal dialysate for 48 hours in the absence or presence of IL-1β (1 ng/mL) and TNFα (1 ng/mL). TGFβ1 mRNA expression was assessed by Northern blot analysis and TGFβ1 protein release by Western blot analysis and enzymelinked immunosorbent assay (ELISA). Results Exposure of HPMCs to high glucose conditions (30, 60, and 90 mmol/L of D-glucose) induced 2.3-, 3.6-, and 4.0-fold increases in TGFβ1 mRNA expression of HPMC with enhanced TGFβ1 protein synthesis and secretion into the media, whereas there were no significant changes in TGFβ1 synthesis with equimolar concentrations of D-mannitol. Incubation with spent dialysate also significantly increased TGFβ1 mRNA expression and protein secretion compared to control media ( p < 0.05). Stimulation with IL-1β (1 ng/mL) or TNFα (1 ng/mL) resulted in a significant increase in TGFβ1 mRNA expression after 48 hours: 2.7 and 2.1 times the control level, respectively. However, TNFα-induced increase in TGFβ1 mRNA expression was not translated into TGFβ1 protein secretion, while IL-1β stimulation induced a significant increase in TGFβ1 protein secretion as well as TGFβ1 mRNA expression. Combined stimulation by high glucose or spent dialysate, together with IL-1β or TNFα, showed a greater increase in TGFβ1 mRNA expression and protein secretion compared to stimulation by high glucose or spent dialysate alone. Conclusion Our results clearly show that high glucose solution and spent dialysate themselves might be sufficient to stimulate the production of TGFβ1 by peritoneal mesothelial cells. In peritoneal dialysis patients, this state of chronic induction of TGFβ1 is further exacerbated in the presence of peritonitis because of the stimulatory effect of proinflammatory cytokines, resulting in augmented TGFβ1 synthesis, thus promoting peritoneal fibrosis.


2012 ◽  
Vol 40 (3) ◽  
pp. 943-953 ◽  
Author(s):  
H Zhang ◽  
J-W Wang ◽  
Y Xu ◽  
K Zhang ◽  
B Yi ◽  
...  

OBJECTIVE: To investigate the effects of β-(3,4-dihydroxyphenyl)lactic acid on oxidative stress stimulated by high glucose levels in human peritoneal mesothelial cells (HPMCs) in vitro. METHODS: HPMCs were incubated with 100 mol/l glucose followed by 0.625 – 20 mg/ml β-(3,4-dihydroxyphenyl)lactic acid. Reactive oxygen species (ROS) were quantified by flow cytometry. Relative levels of fibronectin-1 (FN1), collagen-I α1 (COL1A1), endothelin-1 (EDN1) and haem oxygenase-1 (HMOX1) mRNA and protein were quantified by real-time reverse transcription—polymerase chain reaction and Western blotting, respectively. Absolute levels of FN1 and COLIA1 were quantified by enzyme-linked immunosorbent assay. RESULTS: β-(3,4-Dihydroxyphenyl)lactic acid significantly decreased ROS levels, and EDN1 mRNA and protein levels, in dose- and time-dependent manners. HMOX1 mRNA and protein levels were significantly increased by β-(3,4-dihydroxyphenyl)lactic acid in dose-dependent manners. COL1A1 and FN1 mRNA and protein levels were significantly decreased by β-(3,4-dihydroxyphenyl)lactic acid in dose- and time-dependent manners. CONCLUSIONS: β-(3,4-Dihydroxyphenyl)lactic acid inhibited oxidative stress and reversed increases in FN1 and COLIA1 induced by high glucose levels in HPMCs. This may contribute to a protective role in peritoneal fibrosis.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiaoxiao Yang ◽  
Manchen Bao ◽  
Yi Fang ◽  
Xiaofang Yu ◽  
Jun Ji ◽  
...  

Abstract Background Epithelial-mesenchymal transition (EMT) of mesothelial cells is a key step in the peritoneal fibrosis (PF). Recent evidence indicates that signal transducer and activator of transcription 3 (STAT3) might mediate the process of renal fibrosis, which could induce the expression of hypoxia-inducible factor-1α (HIF-1α). Here, we investigated the effect of STAT3 activation on HIF-1α expression and the EMT of mesothelial cells, furthermore the role of pharmacological blockade of STAT3 in the process of PF during peritoneal dialysis (PD) treatment. Methods Firstly, we investigated the STAT3 signaling in human peritoneal mesothelial cells (HPMCs) from drained PD effluent. Secondly, we explored the effect of STAT3 signaling activation on the EMT and the expression of HIF-1α in human mesothelial cells (Met-5A) induced by high glucose. Finally, peritoneal fibrosis was induced by daily intraperitoneal injection with peritoneal dialysis fluid (PDF) so as to explore the role of pharmacological blockade of STAT3 in this process. Results Compared with the new PD patient, the level of phosphorylated STAT3 was up-regulated in peritoneal mesothelial cells from long-term PD patients. High glucose (60 mmol/L) induced over-expression of Collagen I, Fibronectin, α-SMA and reduced the expression of E-cadherin in Met-5A cells, which could be abrogated by STAT3 inhibitor S3I-201 pretreatment as well as by siRNA for STAT3. Furthermore, high glucose-mediated STAT3 activation in mesothelial cells induced the expression of HIF-1α and the profibrotic effect of STAT3 signaling was alleviated by siRNA for HIF-1α. Daily intraperitoneal injection of high-glucose based dialysis fluid (HG-PDF) induced peritoneal fibrosis in the mice, accompanied by the phosphorylation of STAT3. Immunostaining showed that phosphorylated STAT3 was expressed mostly in α-SMA positive cells in the peritoneal membrane induced by HG-PDF. Administration of S3I-201 prevented the progression of peritoneal fibrosis, angiogenesis, macrophage infiltration as well as the expression of HIF-1α in the peritoneal membrane induced by high glucose. Conclusions Taken together, these findings identified a novel mechanism linking STAT3/HIF-1α signaling to peritoneal fibrosis during long-term PD treatment. It provided the first evidence that pharmacological inhibition of STAT3 signaling attenuated high glucose-mediated mesothelial cells EMT as well as peritoneal fibrosis.


2015 ◽  
Vol 20 (1) ◽  
pp. 30-38 ◽  
Author(s):  
Keiko Kokoroishi ◽  
Ayumu Nakashima ◽  
Shigehiro Doi ◽  
Toshinori Ueno ◽  
Toshiki Doi ◽  
...  

2001 ◽  
Vol 12 (11) ◽  
pp. 2434-2441 ◽  
Author(s):  
JANUSZ WITOWSKI ◽  
JUSTYNA WISNIEWSKA ◽  
KATARZYNA KORYBALSKA ◽  
THORSTEN O. BENDER ◽  
ANDRZEJ BREBOROWICZ ◽  
...  

Abstract. Bioincompatibility of peritoneal dialysis fluids (PDF) has been linked to the presence of glucose degradation products (GDP). Previous experiments have shown that short-term exposure to several GDP at concentrations found in commercially available PDF had no significant effect on human peritoneal mesothelial cells (HPMC). During continuous ambulatory peritoneal dialysis, however, cells are continually exposed to GDP for extended periods of time. Thus, the impact of GDP on HPMC during long-term exposure was assessed. HPMC were cultured for up to 36 d in the presence of 6 identified GDP (acetaldehyde, formaldehyde, furaldehyde, glyoxal, methylglyoxal, and 5-HMF) at doses that reflect their concentrations in conventional PDF. At regular time intervals, the ability of HPMC to secrete cytokines (interleukin-6 [IL-6]) and extracellular matrix molecules (fibronectin) was evaluated. In addition, cell viability, morphology, and proliferative potential were assessed. Exposure to GDP resulted in a significant reduction in mesothelial IL-6 and fibronectin release. Approximately 80% of this decrease occurred during the first 12 d of the exposure and was paralleled by a gradual loss of cell viability and development of morphologic alterations. After 36 d of exposure, the number of cells in GDP-treated cultures was reduced by nearly 60%. However, GDP-treated cells were able to resume normal proliferation when transferred to a normal GDP-free medium. HPMC viability and function may be impaired during long-term exposure to clinically relevant concentrations of GDP, which suggests a potential role of GDP in the pathogenesis of peritoneal membrane dysfunction during chronic peritoneal dialysis.


2005 ◽  
Vol 28 (2) ◽  
pp. 141-149 ◽  
Author(s):  
Y. Naiki ◽  
K. Matsuo ◽  
T. Matsuoka ◽  
Y. Maeda

Human peritoneal mesothelial cells (HPMCs) play an important role in peritoneal functions. During long term peritoneal dialysis, it has been reported that HPMCs are damaged by high glucose solution via the signal of transforming growth factor (TGF)- ß1 produced by HPMCs. In this study, we focused on the effect of hepatocyte growth factor (HGF), known as an anti-fibrotic and anti-TGF-ß1 agent, on HPMCs damaged by high glucose solution. HPMCs were isolated from specimens of the omentum from nonuremic patients after informed consent had been obtained. After confirming adhesion for 6 hours, 100 μL of DMEM with 0.5%FCS were added at different concentrations (D-glucose; 6, 30mM) with or without HGF (10, 30, 100 ng/mL) for 48 hours. We examined the effects of a high concentration of glucose and then focused on following four critical points: 1) the production of HGF from HPMCs exposed to a high concentration of glucose, 2) the expression of c-Met on HPMCs, 3) the viability of those cells, and 4) matrix metalloproteinase-2 (MMP-2) and tissue inhibitors of metalloproteinase-2 (TIMP-2). The following significant changes are described herein: high glucose solution and TGF-ß1 i) decreased HGF production from HPMCs and ii) up-regulated expression of c-Met on HPMCs, and addition of HGF iii) restored viability of HPMCs damaged by glucose, iv) suppressed TGF-ß1 production by HGF, and v) induced up-regulation of MMP-2 and decreased TIMP-2 production by HPMCs. Levels of HGF decreased by high concentrations of glucose in the peritoneal cavity may induce the loss of HPMCs and thereby result in peritoneal fibrosis. These results suggest that HGF is an effective agent in the regeneration of peritoneal membrane damaged by high glucose solution.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Ke Zhang ◽  
Hao Zhang ◽  
Xun Zhou ◽  
Wen-bin Tang ◽  
Li Xiao ◽  
...  

Background. microRNA (miRNA, miR) are thought to interact with multiple mRNAs which are involved in the EMT process. But the role of miRNAs in peritoneal fibrosis has remained unknown.Objective. To determine if miRNA589 regulates the EMT induced by TGFβ1 in human peritoneal mesothelial cell line (HMrSV5 cells).Methods. 1. Level of miR589 was detected in both human peritoneal mesothelial cells (HPMCs) isolated from continuous ambulatory peritoneal dialysis (CAPD) patients’ effluent and HMrSV5 cells treated with or without TGFβ1. 2. HMrSV5 cells were divided into three groups: control group, TGFβ1 group, and pre-miR-589+TGFβ1 group. The level of miRNA589 was determined by realtime PCR. The expressions of ZO-1, vimentin, and E-cadherin in HPMCs were detected, respectively.Results. Decreased level of miRNA589 was obtained in either HPMCs of long-term CAPD patients or HMrSV5 cells treated with TGFβ1. In vitro, TGFβ1 led to upregulation of vimentin and downregulation of ZO-1 as well as E-cadherin in HMrSV5 cells, which suggested EMT, was induced. The changes were accompanied with notably decreased level of miRNA589 in HMrSV5 cells treated with TGFβ1. Overexpression of miRNA589 by transfection with pre-miRNA589 partially reversed these EMT changes.Conclusion. miRNA589 mediates TGFβ1 induced EMT in human peritoneal mesothelial cells.


2005 ◽  
Vol 25 (5) ◽  
pp. 483-491 ◽  
Author(s):  
Yasufumi Kyuden ◽  
Takafumi Ito ◽  
Takao Masaki ◽  
Noriaki Yorioka ◽  
Nobuoki Kohno

Background Loss of peritoneal function is a major complication associated with long-term peritoneal dialysis. Observed changes include loss and degeneration of the mesothelium, submesothelial thickening, alterations in the structure and number of blood vessels, and reduplication of the vascular basement membrane. Exposure to high glucose concentrations in peritoneal dialysis solutions is known to cause injury to cultured human peritoneal mesothelial cells (HPMC) as a result of overexpression of transforming growth factor beta 1 (TGF-β1). Previous studies have demonstrated that angiotensin II (AII) increases expression of TGF-β1 in a number of different cell types; although this has not been demonstrated in HPMC. Objective To clarify possible mechanisms involved in peritoneal fibrosis, we investigated whether HPMC expressed AII-forming pathway mRNA and whether increases in AII induced by high glucose contribute to the production of TGF-β1. We also examined the effects of the angiotensin-converting enzyme inhibitor (ACEI) perindoprilat and the AII receptor blocker (ARB) candesartan on expression of TGF-β1 and proliferation of HPMC. Methods Expression of mRNA for the AII-forming pathway and TGF-β1 in HPMC was examined by reverse transcriptase-polymerase chain reaction (RT-PCR) and quantitative RT-PCR. Levels of AII and TGF-β1 following 48 hours of incubation of the cells in a range of glucose concentrations were measured by enzyme immunoassay and enzyme linked immunosorbent assay respectively. The effect of glucose on cell proliferation was examined using the water-soluble tetrazolium salt WST-1 and [3H]-thymidine uptake. We also investigated the effect of ACEI and ARB on the expression of TGF-β1 and the proliferation of HPMC incubated at high glucose for 48 hours. Results AII-forming pathway mRNA was detected in HPMC, with expression of angiotensinogen, angiotensin-converting enzyme (ACE), AII type 1 receptor, and TGF-β1 mRNA increasing following exposure to glucose according to glucose concentration. High glucose was also shown to increase the production of AII and TGF-β1 and decrease the proliferation of HPMC. In contrast, we found that both the ACEI and the ARB attenuated the increase in TGF-β1 production and reduced cell proliferation caused by exposure to high glucose. These effects were greater with a combination of the two drugs. Conclusion The present study provides evidence that ( 1 ) HPMC express mRNA for the AII-forming pathway; ( 2 ) ACEI and ARB inhibit the TGF-β1 production induced by high glucose; ( 3 ) the AII-forming pathway is one mechanism by which high glucose causes production of TGF-β1. In addition to having antihypertensive and renal-protective effects, combination therapy with an ACEI and an ARB may also be effective in preventing loss of peritoneal function and decreasing peritoneal fibrosis.


Sign in / Sign up

Export Citation Format

Share Document