Enhanced crystallization behaviors and dielectric performance of poly(vinylidene fluoride) film by induced polyamide-1

2021 ◽  
pp. 095400832110311
Author(s):  
Dandan Yuan ◽  
Rundi Yang ◽  
Yuanting Xu ◽  
Xufu Cai

Poly(vinylidene fluoride) (PVDF)-based composites attract tremendous attention as dielectric materials. However, their development has been limited due to the raised problem in the in-homogeneous polymer composites. In this work, a novel PVDF-based film incorporated with polyamide-1, containing the highest density of dipole among all polyamides, was prepared to improve the crystallization behaviors and dielectric properties. The results showed that the optimal concentration of polyamide-1 in PVDF was 6 wt.%. The crystallization rate of PVDF was improved in the presence of polyamide-1. Interestingly, the polyamide-1 was conductive to the formation of β form crystal of PVDF, which exhibited great electric performance. The dielectric constant of PVDF increased sharply and loss tangent still kept at a low level of 0.03@100 Hz when the concentration of polyamide-1 was 6 wt.%. This work may provide a new direction to design dielectric materials for PVDF blends.

2019 ◽  
Vol 19 (6) ◽  
pp. 3591-3596 ◽  
Author(s):  
Lirong Wu ◽  
Dandan Yang

The nickel (Ni) particles and graphite nanosheet (GNS) filled poly(vinylidene fluoride) (PVDF) composites were prepared by solution blending and hot-press processing in the magnetic field. The influence of Ni particles and GNS fillers for the structure, morphology, AC conductivity, dielectric properties and thermal conductivity of composites was investigated. The results showed that the β-phase crystals of PVDF matrix was increased obviously. The AC conductivity, dielectric constant and dielectric loss of PVDF/Ni/GNS composite reached to 10−9 s/cm, 62 and 0.39 when the filler loading was 11 wt.% at 102 Hz, respectively. At the ratio of 15 wt.% filler, the AC conductivity of PVDF/Ni/GNS composite was vastly improved to 10−6 s/cm, however, the dielectric constant increased to ~80 and dielectric loss was over 600 at 102 Hz. By comparing the dielectric performance of PVDF/Ni/GNS, PVDF/Ni and PVDF/GNS composites, it is found that the parallel arrangement of the filler conduces to improve the dielectric properties of the composites. Furthermore, the thermal conductivity of PVDF/Ni/GNS composites increased with the increase of Ni and GNS contents and the value raised to over 0.5 W/mK when filler loading was 15 wt.%.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1541 ◽  
Author(s):  
Yongchang Jiang ◽  
Zhao Zhang ◽  
Zheng Zhou ◽  
Hui Yang ◽  
Qilong Zhang

Polymer dielectric materials are extensively used in electronic devices. To enhance the dielectric constant, ceramic fillers with high dielectric constant have been widely introduced into polymer matrices. However, to obtain high permittivity, a large added amount (>50 vol%) is usually needed. With the aim of improving dielectric properties with low filler content, satellite–core-structured Fe2O3@BaTiO3 (Fe2O3@BT) nanoparticles were fabricated as fillers for a poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) matrix. The interfacial polarization effect is increased by Fe2O3 nanoparticles, and thus, composite permittivity is enhanced. Besides, the satellite–core structure prevents Fe2O3 particles from directly contacting each other, so that the dielectric loss remains relatively low. Typically, with 20 vol% Fe2O3@BT nanoparticle fillers, the permittivity of the composite is 31.7 (1 kHz), nearly 1.8 and 3.0 times that of 20 vol% BT composites and pure polymers, respectively. Nanocomposites also achieve high breakdown strength (>150 KV/mm) and low loss tangent (~0.05). Moreover, the composites exhibited excellent flexibility and maintained good dielectric properties after bending. These results demonstrate that composite films possess broad application prospects in flexible electronics.


2012 ◽  
Vol 496 ◽  
pp. 263-267
Author(s):  
Rui Li ◽  
Jian Zhong Pei ◽  
Yan Wei Li ◽  
Xin Shi ◽  
Qun Le Du

A novel all-polymeric material with high dielectric constant (k) has been developed by blending poly (vinylidene fluoride) (PVDF) with polyamide-6 (PA6). The dependence of the dielectric properties on frequency and polymer volume fraction was investigated. When the volume fraction of PA6 is 20%, the dielectric property is better than others. The SEM investigations suggest that the enhanced dielectric behavior originates from significant interfacial interactions of polymer-polymer. The XRD demonstrate that the PA6 and PVDF affect the crystalline behavior of each component. Furthermore, the stable dielectric constants of the blends could be tuned by adjusting the content of the polymers. The created high-k all-polymeric blends represent a novel type of material that are simple technology and easy to process, and is of relatively high dielectric constant, applications as flexible electronics.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2596
Author(s):  
Jie Wang ◽  
Daniel Adami ◽  
Bo Lu ◽  
Chuntai Liu ◽  
Abderrahim Maazouz ◽  
...  

An understanding of the structural evolution in micro-/nano-layer co-extrusion process is essential to fabricate high-performance multilayered products. Therefore, in this work, we reveal systematically the multiscale structural development, involving both the layer architecture and microstructure within layers of micro-/nano-layer coextruded polymer films, as well as its relationship to dielectric properties, based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)/polycarbonate (PC) system. Interestingly, layer architecture and morphology show strong dependences on the nominal layer thicknesses. Particularly, with layer thickness reduced to nanometer scale, interfacial instabilities triggered by viscoelastic differences between components emerge with the creation of micro-droplets and micro-sheets. Films show an enhanced crystallization with the formation of two-dimensional (2D) spherulites in microlayer coextruded systems and the oriented in-plane lamellae in nanolayer coextruded counterparts, where layer breakup in the thinner layers further changes the crystallization behaviors. These macro- and microscopic structures, developed from the co-extrusion process, substantially influence the dielectric properties of coextruded films. Mechanism responsible for dielectric performance is further proposed by considering these effects of multiscale structure on the dipole switching and charge hopping in the multilayered structures. This work clearly demonstrates how the multiscale structural evolution during the micro-/nano-layer coextrusion process can control the dielectric properties of multilayered products.


2018 ◽  
Vol 160 ◽  
pp. 03002
Author(s):  
Xin Mao ◽  
Jinliang Lv ◽  
Fangfang Zhang ◽  
Bo Wu ◽  
Jie Yang ◽  
...  

This work reports the excellent dielectric composites were prepared from polyimide (PI) and poly(vinylidene fluoride) (PVDF) via solution blending and thermal imidization or chemical imidization. The dielectric and thermal properties of the composites were studied. Results indicated that the dielectric properties of the composites synthesized by these two methods were enhanced through the introduction of PVDF, and the composites exhibited excellent thermal stability. Compared to the thermal imidization, the composites prepared by chemical imidization exhibited superior dielectric properties. This study demonstrated that the PI/PVDF composites were potential dielectric materials in the field of electronics.


2015 ◽  
Vol 29 (10n11) ◽  
pp. 1540003 ◽  
Author(s):  
Xin Ouyang ◽  
Peng Cao ◽  
Weijun Zhang ◽  
Zhuofeng Liu ◽  
Zhaohui Huang ◽  
...  

CaCu 3 Ti 4 O 12 (CCTO)–poly(vinylidene fluoride (PVDF)) composites were prepared by melt blending and hot molding techniques. The addition of CCTO remarkably enhanced the dielectric properties and the thermal conductivity of PVDF composites, while the melting point of the PVDF composites (~170°C) was almost independent of the CCTO concentration. Based on the results of dielectric constant and dielectric breakdown voltage, the PVDF composite containing 40 vol.% CCTO fillers shows the optimized capacitive energy storage potential (7.81 J/cm3).


2021 ◽  
Vol 66 (2) ◽  
pp. 166
Author(s):  
B. Ghule ◽  
M. Laad

Materials exhibiting high dielectric constant (k) values find applications in capacitors, gate dielectrics, dielectric elastomers, energy storage device, while materials with low dielectric constant are required in electronic packaging and other such applications. Traditionally, high k value materials are associated with high dielectric losses, frequency-dependent dielectric behavior, and high loading of a filler. Materials with low k possess a low thermal conductivity. This creates the new challenges in the development of dielectric materials in both kinds of applications. Use of high dielectric constant filler materials increases the dielectric constant. In this study,the factors affecting the dielectric constant and the dielectric strength of polymer composites are explored. The present work aims to study the effect of various parameters affecting the dielectric properties of the materials. The factors selected in this study are the type of a polymer, type of a filler material used, size, shape, loading level and surface modification of a filler material, and method of preparation of the polymer composites. The study is focused on the dielectric enhancement of polymer nanocomposites used in the field of energy storage devices. The results show that the core-shell structured approach for high dielectric constant materials incorporated in a polymer matrix improves the dielectric constant of the polymer composite.


e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Rui Li ◽  
Chuanxi Xiong ◽  
Lijie Dong

AbstractA novel all-polymeric material with high dielectric constant (k) has been developed by blending poly(vinylidene fluoride) (PVDF) with polyacrylamide (PAM). The dependence of the dielectric constant on frequency and polymer volume fraction was investigated. When the weight fraction of PAM is 1wt%, the dielectric constant of the blend could be up to 24, and the dielectric loss tanδ can be lowered to 0.06. The SEM investigations suggest that the enhanced dielectric behavior originates from significant interfacial interactions of polymer-polymer. XRD and FTIR demonstrate that blending PAM with PVDF affects the crystalline behavior of each component. Our finding suggests that the created high-k polymeric blends represent a novel type of material that are flexible and easy to process, and is of relatively high dielectric constant and high breakdown strength; moreover find applications as flexible electronics.


Sign in / Sign up

Export Citation Format

Share Document