scholarly journals Effect of Multiple Passes on Microstructural and Mechanical Properties of Surface Composite Al 2024/SiC Produced by Friction Stir Processing

2020 ◽  
Vol 44 (6) ◽  
pp. 421-426
Author(s):  
Ashish Kumar Srivastava ◽  
Nagendra Kumar Maurya ◽  
Manish Maurya ◽  
Shashi Prakash Dwivedi ◽  
Ambuj Saxena

The application range in defense, aerospace and automotive sectors have enabled aluminium metal matrix composites to emerge in different technological fields due to enhanced micro structural and mechanical characteristics. In the present study, friction stir processing is used to fabricate Al2024/SiC composite with one, two and three passes of the cylindrical tool. Optical microscopy and scanning electronic microscope (SEM) were used to validate the processed sample and to justify the morphological aspects. Energy dispersive spectroscopy (EDS) analysis has also performed to confirm the presence of SiC particles in the composite. It also includes the analysis of mechanical properties such as tensile strength, Rockwell hardness test and nanoindentation to characterize the prepared samples. Improvement in tensile strength with a maximum of 443 MPa, the hardness of 121 HRB and nanoindentation of the specimen was depicted through the mechanical tests.

2020 ◽  
Vol 15 (4) ◽  
Author(s):  
Durgaprasad Kollipara ◽  
Prabhakar Gope VNB ◽  
Raja Loya

Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. A Graphene nanoparticle (GNP) is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. In this paper the effects of GNP on composites based on epoxy resin were analyzed. Different contents of GNP (0 – 4.5 vol. %) were added to the epoxy resin. The GNP/epoxy composite was fabricated under room temperature. Mechanical tests result such as tensile, flexural and hardness test show enhancements of the mechanical properties of the GNP/epoxy composite. The experimental results clearly show an improvement in Young’s modulus, tensile strength, and hardness as compared to pure epoxy. The results of this research are strong evidence for GNP/epoxy composites being a potential candidate for use in a variety of industrial applications, especially for automobile parts, aircraft components, and electronic parts such as super capacitors, transistors, etc.


2020 ◽  
Vol 44 (4) ◽  
pp. 295-300
Author(s):  
Sanjay Kumar ◽  
Ashish Kumar Srivastava ◽  
Rakesh Kumar Singh

Friction stir processing is an avant-garde technique of producing new surface composite or changing the different properties of a material through intense, solid-state localized material plastic deformation. This change in properties depends upon the deformation formed by inserting a non-consumable revolving tool into the workpiece and travels laterally through the workpiece. This research work highlights the effect of process parameters on mechanical properties of fabricated surface composites by friction stir processing. By using various reinforcing materials like Ti, SiC, B4C, Al2O3 with waste elements like waste eggshells, rice husks, coconut shell and coir will be used to fabricate the green composites which are environmentally friendly and reduces the problem of decomposition. The parameter for this experiment is considered as the reinforcing materials, tool rotation speed and tool tilt angle. The SiC/Al2O3/Ti along with eggshell are selected asreinforcement materials. The main effect of the reinforcement is to improve mechanical properties, like hardness, impact strength and strength. The results revealed that the process parameters significantly affect the mechanical properties of friction stir processed surface composites.


Author(s):  
Fadi Al-Badour ◽  
Ibrahim H. Zainelabdeen ◽  
Rami K. Suleiman ◽  
Akeem Adesina

Abstract A hybrid additive manufacturing (AM) and friction stir processing (FSP) was used to heal a crack in 6 mm thick Al 6061-T6 aluminum alloy. AL-6061 is usually used in H2 high-pressure vessel fabrication as well as aerospace applications. In this work, Al-Si powder was utilized to fill the crack, then FSP was applied to consolidate and stir the powder with the base metal to fill and close the crack zone. Effect of FSP parameters including welding speed and tool rotation speed on the quality of repair was studied. Various mechanical tests, as well as characterization techniques such as hardness test, optical microscopy, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS), were employed to study the newly developed hybrid process on the quality of the repair. The investigation revealed that low rotational speed of 800 rpm results in minimum variation in microhardness. Moreover, the impact of welding speed on microhardness is smaller as compared to rotational speed.


2020 ◽  
Vol 27 (4) ◽  
pp. 58-69
Author(s):  
Ghazwan Shihab ◽  
Adel Al-Bash

The aim of this work is to study the effect of the time of shot peening 3mm diameter steel balls on the mechanical properties of (2024 - T3) aluminum alloy butt welds. The welds were joined using Friction stir welding method. Mechanical tests) Tensile strength, hardness, fatigue strength( were performed on welded joints to determine the variation of these properties. The experimental results of SP time, 5 and 10 minutes give an improvement in mechanical properties. It was found that the longer the time of shot peening the mechanical properties are increased to a certain extent than the effect begins whereas when shot peening time at 15 min the mechanical properties decrease due to the concentration of stresses and surface annealing. Results show that the best mechanical properties of the welded zone were obtained at 10 minutes shot time due to the high compressive stresses generated by shot peening.


Author(s):  
Khalid A Al-Ghamdi ◽  
G Hussain ◽  
R Hashemi

Friction stir processing is a novel material fabrication technique. This study was undertaken in order to investigate a suitable set of friction stir processing parameters to form AL7075T651/TiN nano composite. A number of samples were produced by varying the process parameters, namely, tool-pin geometry, number of passes and the direction of tool rotation. The pin geometries employed include triangular, square and threaded taper; the passes were varied over two levels (i.e. 2 and 4) and the tool rotation was changed as clockwise and counter clockwise between the successive passes. The effect of these variations on the composite was quantified through several microstructural and mechanical tests. The increase in the number of passes was observed to improve various characteristics of the composite (i.e. distribution of TiN particles, grain refinement and mechanical properties). The effect of tool geometry, however, was associated with the choice of the number of passes. The change in the direction of tool rotation between the consecutive passes was witnessed to improve the distribution of TiN particles. From the X-ray diffraction analysis of the samples, the formation of several new phases was detected. These were found to have effect on the mechanical properties of the composite. A good trade-off among various properties of the composite (i.e. hardness, tensile strength and ductility) was realized when the friction stir processing was performed using square tool and employing four passes with simultaneously changing the direction of tool rotation between the successive passes. This study is the first report on the fabrication of AL7075T651/TiN nano composite through friction stir processing route.


2015 ◽  
Vol 766-767 ◽  
pp. 246-251 ◽  
Author(s):  
P. Pugalethi ◽  
M. Jayaraman ◽  
A. Natarajan

Aluminium based Metal Matrix Composites (MMCs) with Aluminium matrix and non-metallic reinforcements are finding extensive applications in automotive, aerospace and defence fields because of their high strength-to-weight ratio, high stiffness, hardness, wear-resistance, high-temperature resistance, etc. Composite materials are frequently chosen for structural applications because they have desirable combinations of mechanical characteristics. Development of hybrid metal matrix composites has become an important area of research interest in Material Science. In this work, the Aluminium alloy is reinforced with 3,5,7,9 wt. % of Al2O3 and 2 wt. % of SiC to prepare the hybrid composite. The present study is aimed at evaluating the physical properties of aluminium 7075 in the presence of silicon carbide, aluminium oxide and its combinations. The compositions are added up to the ultimate level and stir casting method is used for the fabrication of aluminium metal matrix composites. The mechanical behaviours of metal matrix composites like tensile strength, and hardness test are investigated by conducting laboratory experiments. Mechanical properties like micro hardness and tensile strength of Al7075 alloy increase with the addition of SiC and Al2O3 reinforcements.


Sign in / Sign up

Export Citation Format

Share Document