Dynamic modeling and stability prediction in milling process of thin-walled workpiece with multiple structural modes

Author(s):  
Zhao Zhang ◽  
Ming Luo ◽  
Baohai Wu ◽  
Dinghua Zhang

Regenerative chatter can easily occur in the milling process of thin-walled workpiece due to the inherently low stiffness. This article aims to predict the stability of thin-walled workpiece in the milling process with a complete dynamic model. First, multiple structural modes of thin-walled workpiece are taken into consideration, and a complete dynamic model of thin-walled workpiece milling system is developed. Then, a numerical integration method is used to achieve the stability lobe diagrams of the milling system and identify the chatter frequency. Besides, the major structural mode, which is responsible for the occurrence of thin-walled workpiece chatter in the milling process, is predicted. A series of milling tests concerning a general cantilever plate are conducted, and the test results agree well with the predicted results, which shows the effectiveness of the proposed method. Finally, the effects of milling tool and structural modes on milling stability are discussed separately, which could provide theoretical basis for the dynamic modeling of thin-walled workpiece in milling process.

2014 ◽  
Vol 852 ◽  
pp. 419-426
Author(s):  
Yong Wang ◽  
Rong Yan ◽  
Fang Yu Peng ◽  
Feng Qiu

In orthogonal turn-milling process, both of the workpiece and the cutter rotate at the same time, which causes cutting depth and cutting thickness to change instantaneously. In this paper, a new 2D stability model of orthogonal turn-milling is established, in which the effect of variable cutting depth and cutting thickness is considered. The stability lobe diagrams are obtained by using Full-discretization Method. By analyzing the stability of orthogonal turn-milling, it is found that it is better than that of ordinary milling in same machining conditions. It means that in orthogonal turn-milling process deep cutting depth can be chosen and high machining efficiency can be obtained compared to that in ordinary milling process.


Author(s):  
Chao Xu ◽  
Pingfa Feng ◽  
Dingwen Yu ◽  
Zhijun Wu ◽  
Jianfu Zhang

Despite recent advances and improvements in modeling and prediction of the dynamics of the machining process, an efficient machining process is limited due to chatter and instability of machining system. In fact, the machining system contains various kinds of joints, which cause difficulties in dynamics modeling, simulation and prediction. Moreover, the flexible support system results in large deformation and violent vibration of the workpiece when machining, and the thin-walled workpiece easily gives rise to the chatter of the machining system. Therefore, the dynamics of the flexible support system was considered to calculate stability lobe diagram in the modeling of milling process. The whole machining system was regarded as a closed loop composed by the machine tool structures, support, workpiece and machining process. In this paper, the receptance coupling (RC) method was introduced to predict the dynamics of the closed machining system. A milling process was taken for example to predict the chatter limitations using the dynamics of closed model. The mathematical model of the machining system (machine tool structures, spindle, holder and tool), together with the details of joint contacts, was given based on the RC method. The RC model was used to obtain the dynamics of the system, while receptance of the tool point was coupled. Based on the coupling model of the machining system, the depth limitations under different speeds were estimated for the technology parameter optimization in milling process. The response was considered to be the sum of the cutting point and the support system. The flexibility of the support system was considered to be the feedback of the cutting stiffness. By this means, the traditional model was modified to calculate the stability lobe diagram based on the dynamics of the spindle and support system. Furthermore, the milling experiment was carried out to verify the prediction results, and the dominant natural frequencies of receptance at tool point were obtained by modal testing to define the stability lobe diagram. It was found that the chatter results matched well with the stability lobes. It was concluded that the support system with poor stiffness might cause violent chatter especially when the workpiece was thin-walled. The cutting depth limitations of the flexible support system were lower than that of the rigid one. Moreover, this closed model of the machining system is appropriate for the chatter prediction of the flexible support system or thin-walled workpiece, so it is helpful for a better parameter optimization.


Author(s):  
Ali Mokhtari ◽  
Mohammad Mahdi Jalili ◽  
Abbas Mazidi

Determination of optimal parameters of cutting tool is one of the most significant factors in any operation planning of metal elements, especially in micro-milling process. This article presents an optimization procedure, based on genetic algorithms, to optimize some parameters related to micro-milling tool including number of teeth, shank diameter, fluted section diameter, shank length, taper length, and length of fluted section. The aim of this optimization is maximizing the minimum value of cutting depth on the border of stability lobe diagrams, which is called allowable cutting depth, for chatter-free machining. Cutting tool is modeled as a three-dimensional spinning cantilever Timoshenko beam based on strain gradient elasticity theory. Structural nonlinearity, gyroscopic moment, rotary inertia, and velocity-dependent process damping are also considered in the cutting tool model. The values of natural frequency, damping ratio, and material length scale of the micro-milling tool are calculated using a system identification based on genetic algorithm to match the analytical response with recorded experimental vibration signal. Using beam model, the allowable cutting depth is increased in the optimization process for a specific range of spindle speed to avoid the chatter phenomenon. Analytical study of micro-milling process stability is carried out to determine the cost function of the genetic algorithm. A plot of the greatest fitness in each generation is sketched. In addition, stability lobe diagrams before and after optimization process are presented to show the efficiency of the optimized micro-milling tool. In the presented examples, the results of genetic algorithm may lead to design or find a micro-milling tool that its acceptable cutting depth increases up to 1.9313 times.


2018 ◽  
Vol 148 ◽  
pp. 09003 ◽  
Author(s):  
Paweł Lajmert ◽  
Rafał Rusinek ◽  
Bogdan Kruszyński

In the paper a cutting stability in the milling process of nickel based alloy Inconel 625 is analysed. This problem is often considered theoretically, but the theoretical finding do not always agree with experimental results. For this reason, the paper presents different methods for instability identification during real machining process. A stability lobe diagram is created based on data obtained in impact test of an end mill. Next, the cutting tests were conducted in which the axial cutting depth of cut was gradually increased in order to find a stability limit. Finally, based on the cutting force measurements the stability estimation problem is investigated using the recurrence plot technique and Hilbert vibration decomposition method.


Author(s):  
Mahdi Eynian ◽  
Sunday Ogheneochuko Usino ◽  
Ana Esther Bonilla Hernández

Surface roughness is an important aspect of a machined piece and greatly influences its performance. This paper presents the surface roughness of end-milled aluminium plates in stable and unstable machining conditions at various spindle speed and depth of cuts machined with cylindrical end-mills. The surface roughness is measured using high-resolution surface replicas with a white light interferometry (WLI) microscope. The measurements of the end-milled floors show that the surface roughness as long as the cutting is performed in stable conditions is insensitive to the depth of cut or spindle speed. In contrast, within chattering conditions, which appear according to stability lobes, surface roughness values increase almost 100%. While at the valleys of the stability lobe diagram, there is a gradual increase in roughness, at the peaks of the stability lobe, the transition from the stable to unstable condition occurs with a sudden increase of the roughness values. In the study of down-milled walls, while the roughness increases with the depth of cut within both the stable and the chattering regions, the transition from the stable to chattering condition can lead to a much larger increase in the surface roughness. These results could be used for strategic selection of operation considering the needs of robustness and possible variation of dynamic parameters that can affect the position of the cutting conditions within the stability lobe diagrams.


2021 ◽  
Vol 2021 (4) ◽  
pp. 4830-4835
Author(s):  
CHRISTIAN BRECHER ◽  
◽  
RALPH KLIMASCHKA ◽  
ALEXANDER STEINERT ◽  
STEPHAN NEUS ◽  
...  

Process instabilities due to regenerative chatter pose significant limitations on the achievable material removal rates and thus on the profitability of machining operations. Stability lobe diagrams serve to exploit the maximum yet stable cutting depth and can be determined either analytically or experimentally. While analytical approaches suffer from inaccuracies because of the assumptions made for the specific models, experimental stability lobe diagrams require extensive cutting tests. Therefore, this paper introduces a new automated experimental method for determining stability lobe diagrams in milling with reduced effort regarding time. A closed-loop system is designed, containing a sensor-based online chatter detection along with a strategy to set parameters for subsequent cuts based on the stability boundaries known at each iteration. Both cuts with continuously increasing cutting depth and varied spindle speed are deployed to ensure fast detection of stability limits. The method is tested for a slot milling use case and the results are compared to a conventionally obtained stability lobe diagram yielding a significantly reduction in required time (-90 %) and resources (-67 %) whilst maintaining good accuracy. The reduced effort qualifies the proposed method as a tool to rapidly deliver maximum productive yet stable cutting parameters for optimization of existing or enhanced planning of new manufacturing processes.


Author(s):  
Weitao Li ◽  
Liping Wang ◽  
Guang Yu

Abstract The stability lobe diagram (SLD) is an important expression way of milling stability prediction result. The SLD obtained by only selecting the most flexible mode fails to predict the chatter if the milling process is dominated by multiple modes. To reveal the relationship between the SLD with multiple modes and the SLDs corresponding to each single mode, this paper studies the construction mechanism of the SLD with multiple modes by using the time domain method. First, the milling dynamic model of the tool with multiple modes is established. Then, the numerical method based on the Newton-Cotes rules is used to solve the milling dynamic model with multiple modes whose solution is in the form of the SLD. It shows that the SLD with multiple modes can be approximated by using the lowest envelope of the SLDs corresponding to each single mode. Finally, two study cases are adopted to verify the construction mechanism of the SLD with multiple modes. To verify the correctness of the SLD with multiple modes, a series of milling tests are carried out. The experimental results agree with the simulation results, which means the proposed time domain method can reveal the construction mechanism of the SLD with multiple modes.


2013 ◽  
Vol 764 ◽  
pp. 83-89
Author(s):  
A. Kamaruddin ◽  
W.C. Pan ◽  
S.L. Ding ◽  
J. Mo

Study of predicting chatter has been around for many years. These studies are crucial for our understanding of machining processes and to enhance efficiency in manufacturing. This paper presents a new mechanism affecting the stability of machining process called mass induced damping. This effect is simulated numerically with tested values of initial parameters taken for impact tests of a thin-walled workpiece. Results from the simulation shows minor increment in allowable depth of cut by numerically calculated using stability lobe theory. This effect will open a new understanding how certain mechanical factors would affect the value of damping of a system.


2011 ◽  
Vol 21 (10) ◽  
pp. 2943-2954 ◽  
Author(s):  
KRZYSZTOF KĘCIK ◽  
RAFAŁ RUSINEK ◽  
JERZY WARMIŃSKI

In this paper, we study the stability of a high speed milling process of nickel superalloys Inconel 713C by methods used in nonlinear dynamics. Stability Lobe Diagram was a result of modal analysis and next verified by recurrence plots, recurrence quantification analysis and classical nonlinear methods. A stability lobes diagram shows the indistinct boundary between chatter-free stable machining and unstable processes. Nevertheless, some recurrence quantification analysis measures give interesting results.


2012 ◽  
Vol 443-444 ◽  
pp. 21-26 ◽  
Author(s):  
Wei Wei Liu ◽  
Xiao Juan Gao ◽  
Chen Wei Shan ◽  
Wei Jun Tian

In this paper, a new experiment procedure is proposed to study the influence of cutter parameters and clamping methods on the stability of the milling process of thin-walled blade. A dedicated fixture is designed to carry out the experiment. Simulation results show that the new clamping system can enhance the rigidity of thin-walled blade to reduce cutting deformation and chatter vibration phenomenon. Then, cutter and cutting parameters can be optimized properly to make the system obtain high rigidity and high performance stable milling process. Industrial application indicates that the new system can improve the cutting performance and ensure the cutting quality.


Sign in / Sign up

Export Citation Format

Share Document