Influence of Cutter Geometric Parameters on the Stability of Milling Process of Thin-Walled Blades

2012 ◽  
Vol 443-444 ◽  
pp. 21-26 ◽  
Author(s):  
Wei Wei Liu ◽  
Xiao Juan Gao ◽  
Chen Wei Shan ◽  
Wei Jun Tian

In this paper, a new experiment procedure is proposed to study the influence of cutter parameters and clamping methods on the stability of the milling process of thin-walled blade. A dedicated fixture is designed to carry out the experiment. Simulation results show that the new clamping system can enhance the rigidity of thin-walled blade to reduce cutting deformation and chatter vibration phenomenon. Then, cutter and cutting parameters can be optimized properly to make the system obtain high rigidity and high performance stable milling process. Industrial application indicates that the new system can improve the cutting performance and ensure the cutting quality.

2009 ◽  
Vol 69-70 ◽  
pp. 428-432 ◽  
Author(s):  
Qing Hua Song ◽  
Yi Wan ◽  
Shui Qing Yu ◽  
Xing Ai ◽  
J.Y. Pang

A method for predicting the stability of thin-walled workpiece milling process is described. The proposed approach takes into account the dynamic characteristics of workpiece changing with tool positions. A dedicated thin-walled workpiece representative of a typical industrial application is designed and modeled by finite element method (FEM). The workpiece frequency response function (FRF) depending on tool positions is obtained. A specific 3D stability chart (SC) for different spindle speeds and different tool positions is then elaborated by scanning the dynamic properties of workpiece along the machined direction throughout the machining process. The dynamic optimization of cutting parameters for increasing the chatter free material removal rate and surface finish is presented through considering the chatter vibration and forced vibration. The investigations are compared and verified by high speed milling experiments with flexible workpiece.


Author(s):  
Gang Jin ◽  
Qichang Zhang ◽  
Shuying Hao ◽  
Qizhi Xie

The use of variable pitch or helix cutters is a known means to prevent chatter vibration during milling. In this article, an alternative method based on an improved semi-discretization method is proposed to predict the stability of variable pitch or variable helix milling. In order to consider the effect of distributed system delays attributed to helix variation, the average delays were calculated for each flute after the engaged cutting flutes were divided into a finite number of axial elements. Meanwhile, a straightforward integral force model, which can consider the piecewise continuous regions of the cutting that describe the helix angle is used to determine the cutting force. Through comparisons with prior works, time-domain simulations, and cutting tests, the proposed approach was verified. In addition, the method was applied to examine the effect of tool geometries on stability trends. Several phenomena for certain combinations of pitch and helix angles are shown and explained.


Mechanik ◽  
2017 ◽  
Vol 90 (11) ◽  
pp. 965-967
Author(s):  
Piotr Andrzej Bąk ◽  
Krzysztof Jemielniak

Self-excited vibrations significantly reduce the milling productivity, deteriorate the quality of machined surface and tool life. One of the ways to avoid these vibrations is to modify the cutting parameters based on the stability analysis results. A method of numerical simulation of self-excited vibrations in the time domain can be used for this purpose. A comparison of numerical simulation results with those from experiments conducted using a milling machine is presented. The results confirm the correctness of applied modeling.


Author(s):  
C. Y. Huang ◽  
J.-J. Junz Wang

Chatter is caused by two main mechanisms: the regenerative waviness and the mode coupling. Both of these two chatter mechanisms always exist simultaneously, but most studies only discuss the regenerative chatter behavior. The purpose of this paper is to investigate the mode coupling behavior in end milling process. A mechanical model considering both of the regenerative and mode coupling effects is then constructed to simulate the milling dynamics. It is shown that the stability of milling is dominated by the eigenvalues of the process matrix and the structure vibration trajectories are affected by the eigenvectors of the process matrix. The rotation direction of chatter vibration is an important feature to determine whether mode coupling chatter occurs or not. By analyzing vibration trajectories, this paper then shows that chatter vibration will rotate in the direction which periodically accumulates the vibration energy. Finally, some methods for adjusting the cutting conditions to avoid the mode coupling chatter are proposed.


Author(s):  
Chao Xu ◽  
Pingfa Feng ◽  
Dingwen Yu ◽  
Zhijun Wu ◽  
Jianfu Zhang

Despite recent advances and improvements in modeling and prediction of the dynamics of the machining process, an efficient machining process is limited due to chatter and instability of machining system. In fact, the machining system contains various kinds of joints, which cause difficulties in dynamics modeling, simulation and prediction. Moreover, the flexible support system results in large deformation and violent vibration of the workpiece when machining, and the thin-walled workpiece easily gives rise to the chatter of the machining system. Therefore, the dynamics of the flexible support system was considered to calculate stability lobe diagram in the modeling of milling process. The whole machining system was regarded as a closed loop composed by the machine tool structures, support, workpiece and machining process. In this paper, the receptance coupling (RC) method was introduced to predict the dynamics of the closed machining system. A milling process was taken for example to predict the chatter limitations using the dynamics of closed model. The mathematical model of the machining system (machine tool structures, spindle, holder and tool), together with the details of joint contacts, was given based on the RC method. The RC model was used to obtain the dynamics of the system, while receptance of the tool point was coupled. Based on the coupling model of the machining system, the depth limitations under different speeds were estimated for the technology parameter optimization in milling process. The response was considered to be the sum of the cutting point and the support system. The flexibility of the support system was considered to be the feedback of the cutting stiffness. By this means, the traditional model was modified to calculate the stability lobe diagram based on the dynamics of the spindle and support system. Furthermore, the milling experiment was carried out to verify the prediction results, and the dominant natural frequencies of receptance at tool point were obtained by modal testing to define the stability lobe diagram. It was found that the chatter results matched well with the stability lobes. It was concluded that the support system with poor stiffness might cause violent chatter especially when the workpiece was thin-walled. The cutting depth limitations of the flexible support system were lower than that of the rigid one. Moreover, this closed model of the machining system is appropriate for the chatter prediction of the flexible support system or thin-walled workpiece, so it is helpful for a better parameter optimization.


Author(s):  
Yan-jie Du ◽  
Cai-xu Yue ◽  
Xiao-chen Li ◽  
Xian-li Liu ◽  
Steven Y. Liang

As a typical aerospace difficult-to-machine material, tool failure in milling titanium alloy Ti6Al4V will reduce the stability of the milling process and affect the surface quality of the workpiece. Aiming at the fact that cemented carbide tools are prone to wear failure and breakage failure in milling titanium alloy, a safe tool failure boundary map is provided to ensure that the tools will not occur failure with the cutting parameters selected in the safe area during the prediction time. Based on the processing characteristics of Ti6Al4V, the failure boundary map mainly considers three forms of tool failure: flank wear, rake wear, and cutting edge breakage. By revealing the three failure mechanisms, the failure analytical model is established and the failure boundary map is obtained. Compared with the experimental results, it has good consistency, and the research results can provide a reference for the field of titanium alloy cutting process.


2010 ◽  
Vol 139-141 ◽  
pp. 748-751
Author(s):  
Min Wan ◽  
Yi Ting Wang ◽  
Wei Hong Zhang ◽  
Jian Wei Dang

Milling process will be dominated by multiple delays due to the effect of the cutter runout or the pitch angles of the cutter. In this paper, research efforts are focused on the dynamic behavior of milling processes under different cutting condition parameters such as different radial immersions, feed directions, feeds per tooth and helix angles. To improve the prediction accuracy of stability lobe, the combined influences of feed rate and cutter runout on the stability lobes are also taken into account. The basic principle of the method presented in one existing work is applied to examine the asymptotic stability trends for both down milling and up milling. Some new phenomena for certain combinations of cutting parameters are shown and explained in detail. It is found that as cutter runout occurs, feed per tooth, feed direction and cutter helix angle have great effects on the stability lobes.


2006 ◽  
Vol 315-316 ◽  
pp. 736-741 ◽  
Author(s):  
K. Wu ◽  
Ning He

The existent studies on milling dynamics of the thin-walled structure components are reviewed first, then a kind of FEM simplified model analyzing the milling dynamics of the thin-walled structure components is proposed. Based on the proposed model, some simulations have been done under different cutting parameters and different machining conditions. At last, the simulation results are analyzed and discussed.


Author(s):  
Zhao Zhang ◽  
Ming Luo ◽  
Baohai Wu ◽  
Dinghua Zhang

Regenerative chatter can easily occur in the milling process of thin-walled workpiece due to the inherently low stiffness. This article aims to predict the stability of thin-walled workpiece in the milling process with a complete dynamic model. First, multiple structural modes of thin-walled workpiece are taken into consideration, and a complete dynamic model of thin-walled workpiece milling system is developed. Then, a numerical integration method is used to achieve the stability lobe diagrams of the milling system and identify the chatter frequency. Besides, the major structural mode, which is responsible for the occurrence of thin-walled workpiece chatter in the milling process, is predicted. A series of milling tests concerning a general cantilever plate are conducted, and the test results agree well with the predicted results, which shows the effectiveness of the proposed method. Finally, the effects of milling tool and structural modes on milling stability are discussed separately, which could provide theoretical basis for the dynamic modeling of thin-walled workpiece in milling process.


Sign in / Sign up

Export Citation Format

Share Document