An approach to analyze the position and orientation between two parts assembled by non-ideal planes

Author(s):  
Jian Zhang ◽  
Lihong Qiao ◽  
Zhicheng Huang ◽  
Nabil Anwer

Performance analysis, which plays a key role in the design stage, is employed to estimate whether product performance can satisfy design requirements. In general, product performance is gained after parts are assembled; product performance is influenced by the position and orientation deviations (PODs) that occur in directions of the constrained degrees of freedom (DOFs) due to the surface deviations of mating-surfaces. Furthermore, PODs are uncertain because the surface deviations as well as positions in the unconstrained DOF directions can vary randomly. Thus, predicting the consequences of uncertain PODs on product performance is key for performance analysis. Considering that planes are extensively used in assemblies, this study aims to propose a statistical approach to analyze the uncertain PODs of non-ideal planes. A modeling method from the perspective of manufacturing errors is employed to describe the uncertain surface deviations. A method for computing the uncertain PODs based on the progressive adjustment of coordinate systems is proposed. The maximum PODs that characterize the most unfavorable assembly situation are determined as evaluation indicators. Finally, the effectiveness of the presented approach is verified by a case study. Because both the effects of uncertain surface deviations and uncertain positions on PODs can be considered, the approach is expected to help predict the practical effects of uncertain PODs on product performance accurately during the design stage.

Author(s):  
W Dunsmore ◽  
G Pitts ◽  
S M Lewis ◽  
C J Sexton ◽  
C P Please ◽  
...  

This paper considers robust product design applied to mechanical systems via computer-based models at the detail design stage. This involves the efficient use of computer-based experiments to understand how product performance, both its mean and variability, depends on the design parameters. The integration of the general concepts and practical tools is described in terms of the design process, with the aim of making the techniques accessible to designers in an industrial context. The approach is motivated from a design for quality standpoint and is directed principally at improving functional reliability, while addressing issues of performance and cost. The approach is illustrated using a case study on the robust design of a cam mechanism.


2016 ◽  
Vol 8 (6) ◽  
Author(s):  
Henrique Simas ◽  
Raffaele Di Gregorio

Manufacturing and assembly (geometric) errors affect the positioning precision of manipulators. In six degrees-of-freedom (6DOF) manipulators, geometric error effects can be compensated through suitable calibration procedures. This, in general, is not possible in lower-mobility manipulators. Thus, methods that evaluate such effects must be implemented at the design stage to determine both which workspace region is less affected by these errors and which dimensional tolerances must be assigned to match given positioning-precision requirements. In the literature, such evaluations are mainly tailored on particular architectures, and the proposed techniques are difficult to extend. Here, a general discussion on how to take into account geometric error effects is presented together with a general method to solve this design problem. The proposed method can be applied to any nonoverconstrained architecture. Eventually, as a case study, the method is applied to the analysis of the geometric error effects of the translational parallel manipulator (TPM) Triflex-II.


Author(s):  
Jinheng Gu ◽  
Changqing Liu ◽  
Shenghui Fu ◽  
Changle Pang

Product design-oriented models are a decision-making problem with multiple criteria based on the assessment of product design factor that represent engineer judgments and customer desires, and are used to adapt to increasing competition and high levels of customization. Thus, in this work, a “sandwich-like” architecture and a hybrid integrated approach including triangle fuzzy numbers, quality function deployment, and the LeaderRank algorithm are respectively proposed to express and assess product designs more effectively. Additionally, the proposed approach is a measure study which can determine the design requirements, the relationships between product design and customer requirements, and the correlations among product values. The fuzzy analytical network process and LeaderRank algorithm are employed to evaluate the product design requirements and interaction between the product value and the uncertainty that exists in expert judgment. Besides, a case study is selected as an example to illustrate the “sandwich-like” architecture in the product design stage, and a priority analysis is performed to assess the importance degrees of product designs for customer needs, thereby providing optimization for product design and an effective approach to improve the product value.


2021 ◽  
Author(s):  
Constantin Torcatoru ◽  
Dan Săvescu

Abstract To remain competitive on the market with a developed product, it’s very important to analyze the manufacturing costs and times, from the concept stage of the product. Design for manufacturing and assembly (DFMA) is one of the engineering methods that can be applied to reduce manufacturing costs and times, right from the design stage, without compromising product performance and reliability. The 3D modeling of the tray was made in Solidworks, and for the analysis of it’s manufacture and assembly, the Boothroyd and Dewhurst principle and recommendations from the DFMA software were followed. This paper presents a case study for a subassembly called a tray, used in automatic vertical storage systems. For the redesigned model, substantial improvements were obtained, through cost reductions of 12% and an increase in design efficiency from 4.86 to 12.03. Product analysis using DFMA has proven to be a key point in the development of a product that meets engineers.


Buildings ◽  
2018 ◽  
Vol 8 (5) ◽  
pp. 66
Author(s):  
Ugochukwu Elinwa ◽  
Cemil Atakara ◽  
Ifeoluwa Ojelabi ◽  
Abiola Abiodun
Keyword(s):  

2018 ◽  
Vol 12 (3) ◽  
pp. 181-187
Author(s):  
M. Erkan Kütük ◽  
L. Canan Dülger

An optimization study with kinetostatic analysis is performed on hybrid seven-bar press mechanism. This study is based on previous studies performed on planar hybrid seven-bar linkage. Dimensional synthesis is performed, and optimum link lengths for the mechanism are found. Optimization study is performed by using genetic algorithm (GA). Genetic Algorithm Toolbox is used with Optimization Toolbox in MATLAB®. The design variables and the constraints are used during design optimization. The objective function is determined and eight precision points are used. A seven-bar linkage system with two degrees of freedom is chosen as an example. Metal stamping operation with a dwell is taken as the case study. Having completed optimization, the kinetostatic analysis is performed. All forces on the links and the crank torques are calculated on the hybrid system with the optimized link lengths


Sign in / Sign up

Export Citation Format

Share Document