scholarly journals Aspects Regarding the Redesign of a Component of the Vertical Lifting Module Used in Sustainable Production Management

Author(s):  
Constantin Torcatoru ◽  
Dan Săvescu

Abstract To remain competitive on the market with a developed product, it’s very important to analyze the manufacturing costs and times, from the concept stage of the product. Design for manufacturing and assembly (DFMA) is one of the engineering methods that can be applied to reduce manufacturing costs and times, right from the design stage, without compromising product performance and reliability. The 3D modeling of the tray was made in Solidworks, and for the analysis of it’s manufacture and assembly, the Boothroyd and Dewhurst principle and recommendations from the DFMA software were followed. This paper presents a case study for a subassembly called a tray, used in automatic vertical storage systems. For the redesigned model, substantial improvements were obtained, through cost reductions of 12% and an increase in design efficiency from 4.86 to 12.03. Product analysis using DFMA has proven to be a key point in the development of a product that meets engineers.

Author(s):  
W Dunsmore ◽  
G Pitts ◽  
S M Lewis ◽  
C J Sexton ◽  
C P Please ◽  
...  

This paper considers robust product design applied to mechanical systems via computer-based models at the detail design stage. This involves the efficient use of computer-based experiments to understand how product performance, both its mean and variability, depends on the design parameters. The integration of the general concepts and practical tools is described in terms of the design process, with the aim of making the techniques accessible to designers in an industrial context. The approach is motivated from a design for quality standpoint and is directed principally at improving functional reliability, while addressing issues of performance and cost. The approach is illustrated using a case study on the robust design of a cam mechanism.


1969 ◽  
Vol 184 (1) ◽  
pp. 593-614 ◽  
Author(s):  
M. A. Satter ◽  
B. Downs ◽  
G. R. Wray

An experimental and analytical study is made of the noise emission from the drawroll assembly of a textile draw-twisting machine. As an alternative to resorting to acoustic absorption techniques or the use of expensive high damping materials, investigations are made into the basic method of noise generation in the assembly. This leads to the incorporation of small design changes and the significantly lower noise emission thereby achieved is compared with the original emission. Aimed at the machine designer, the presentation is made in a straightforward, non-mathematical fashion.


Author(s):  
Jian Zhang ◽  
Lihong Qiao ◽  
Zhicheng Huang ◽  
Nabil Anwer

Performance analysis, which plays a key role in the design stage, is employed to estimate whether product performance can satisfy design requirements. In general, product performance is gained after parts are assembled; product performance is influenced by the position and orientation deviations (PODs) that occur in directions of the constrained degrees of freedom (DOFs) due to the surface deviations of mating-surfaces. Furthermore, PODs are uncertain because the surface deviations as well as positions in the unconstrained DOF directions can vary randomly. Thus, predicting the consequences of uncertain PODs on product performance is key for performance analysis. Considering that planes are extensively used in assemblies, this study aims to propose a statistical approach to analyze the uncertain PODs of non-ideal planes. A modeling method from the perspective of manufacturing errors is employed to describe the uncertain surface deviations. A method for computing the uncertain PODs based on the progressive adjustment of coordinate systems is proposed. The maximum PODs that characterize the most unfavorable assembly situation are determined as evaluation indicators. Finally, the effectiveness of the presented approach is verified by a case study. Because both the effects of uncertain surface deviations and uncertain positions on PODs can be considered, the approach is expected to help predict the practical effects of uncertain PODs on product performance accurately during the design stage.


2016 ◽  
Vol 861 ◽  
pp. 593-600 ◽  
Author(s):  
Benedek Kiss ◽  
Zsuzsa Szalay

Life Cycle Assessment (LCA) is an advantageous tool for the analysis of the overall environmental effects of a building. Most of the decisions that influence the final result of an LCA are made during the design process of the building. Therefore, LCA in early design stages is crucial, because the changes in this period of design are cheaper and more effective. However, there are many other aspects that influence the design of a building. During the design process a high number of variables have to be defined, and in each design stage a specific number of variables have to be fixed depending on various engineering considerations. In this paper we investigate the effect of decisions made in each design stage on LCA results. Within this paper the available possibilities are compared with the variant that was actually selected in each stage, and it is evaluated how environmental indicators evolve during the whole design process. The approach is demonstrated on a case study of a realized single family house.


Buildings ◽  
2018 ◽  
Vol 8 (5) ◽  
pp. 66
Author(s):  
Ugochukwu Elinwa ◽  
Cemil Atakara ◽  
Ifeoluwa Ojelabi ◽  
Abiola Abiodun
Keyword(s):  

2021 ◽  
Vol 13 (5) ◽  
Author(s):  
Viktória Mozgai ◽  
Bernadett Bajnóczi ◽  
Zoltán May ◽  
Zsolt Mráv

AbstractThis study details the non-destructive chemical analysis of composite silver objects (ewers, situlas, amphora and casket) from one of the most significant late Roman finds, the Seuso Treasure. The Seuso Treasure consists of fourteen large silver vessels that were made in the fourth–early fifth centuries AD and used for dining during festive banquets and for washing and beautification. The measurements were systematically performed along a pre-designed grid at several points using handheld X-ray fluorescence analysis. The results demonstrate that all the objects were made from high-quality silver (above 90 wt% Ag), with the exception of the base of the Geometric Ewer B. Copper was added intentionally to improve the mechanical properties of soft silver. The gold and lead content of the objects shows constant values (less than 1 wt% Au and Pb). The chemical composition as well as the Bi/Pb ratio suggests that the parts of the composite objects were manufactured from different silver ingots. The ewers were constructed in two ways: (i) the base and the body were made separately, or (ii) the ewer was raised from a single silver sheet. The composite objects were assembled using three methods: (i) mechanical attachment; (ii) low-temperature, lead-tin soft solders; or (iii) high-temperature, copper-silver hard solders. Additionally, two types of gilding were revealed by the XRF analysis, one with remnants of mercury, i.e. fire-gilding, and another type without remnants of mercury, presumably diffusion bonding.


2019 ◽  
Vol 100 ◽  
pp. 00070 ◽  
Author(s):  
Elżbieta Romanik ◽  
Yaroslav Bezyk ◽  
Marcin Pawnuk ◽  
Urszula Miller ◽  
Agnieszka Grzelka

Odour concentration measurements in a chosen industrial source were made in this study using the method of dynamic olfactometry. The two different scenarios considered the variation of the odour emission rate as input for the dispersion model were compared for the period 2017 (before installation of the equipment for gas treatment) and 2018 (after implementation of purifying technologies). In this paper the odour impact range was determined by applying model calculations conducted in the Polish reference dispersion model – OPERAT FB software for the grid size 2 x 2 km. The conducted research shows a significant improvement in the odour impact range of chosen industrial source in year 2018 compared to 2017.


Sign in / Sign up

Export Citation Format

Share Document