Piston ring–cylinder liner lubrication analysis in a CO2 refrigeration reciprocating compressor

Author(s):  
B Yang ◽  
Y Zhao

A simulation model is developed for the piston ring–cylinder liner lubrication problem in a CO2 refrigeration reciprocating compressor. Patir and Cheng’s modified Reynolds equation including pressure flow factors, shear flow factors, and shear stress factors is used to consider the effect of surface roughness on lubrication. The piston ring is assumed to be fully flooded at the leading edge, and both the cavitation case and fully flooded case are considered at the trailing edge. Modified Reynolds boundary condition is employed. The simulation results show that, the minimum oil film thickness has a maximum magnitude in the middle stroke region for downward stroke and upward stroke. In the vicinity of the dead centres, the magnitude of the friction force is much higher than that in the middle stroke region. The oil film pressure distribution along the piston ring thickness at different specified crank angles is indicated. The effects of ring thickness, crown height on minimum oil film thickness, and friction force are also investigated.

2011 ◽  
Vol 199-200 ◽  
pp. 734-738 ◽  
Author(s):  
Qiu Ying Chang ◽  
Xian Liang Zheng ◽  
Qing Liu

Surface texturing has been successfully employed in some tribological applications in order to diminish friction and wear. This technology may be used in a piston ring to decrease the friction and wear of the contact between a piston ring and cylinder liner. A numerical simulation of lubrication between a surface textured piston ring and cylinder liner based on the hydrodynamic lubrication theory was conducted. The influence of surface texture parameters on piston ring lubrication performance was obtained by solving the mathematical equations with a multi-grid method. The results show that under the micro-dimple area density of 5%-40% the minimum oil film thickness increases and the dimensionless friction force decreases with the increasing of it. Under the dimple area density of 40%-60%, the minimum oil film thickness and the dimensionless friction force change slightly. Under various dimple area densities the optimum dimple depth at the given working condition in this paper is about 5µm.


Author(s):  
Yibin Guo ◽  
Wanyou Li ◽  
Dequan Zou ◽  
Xiqun Lu ◽  
Tao He

In this paper a mixed lubrication model considering lubricant supply conditions on cylinder bore has been developed for the piston ring lubrication. The numerical procedures of both fully flooded and starved lubrication were included in the model. The lubrication equations and boundary conditions at the end of strokes were discussed in detail. The effects of piston ring design parameters, such as ring face profile and ring tension, on oil film thickness, friction force and power loss under fully flooded and starved lubrication conditions due to available lubricant supply on cylinder bore were studied. The simulation results show that the oil available in the inlet region of the oil film is important to the piston ring friction power loss. With different ring face crown heights and tensions, the changes of oil film thickness and friction force were apparent under fully flooded lubrication, but almost no changes were found under starved lubrication except at the end of a stroke. In addition, the oil film thickness and friction force were affected evidently by the ring face profile offsets under both fully flooded and starved lubrication conditions, and the offset towards the combustion chamber made a large contribution to forming thicker oil film during the expansion stroke. So under different lubricant supply conditions on the cylinder bore, the ring profile and tension need to be adjusted to reduce the friction and power loss. Moreover, the effects of lubricant viscosity, surface composite roughness, and engine operating speed on friction force and power loss were also discussed.


Author(s):  
Mohamed Kamal Ahmed Ali ◽  
Hou Xianjun ◽  
Richard Fiifi Turkson ◽  
Muhammad Ezzat

This paper presents a model to study the effect of piston ring dynamics on basic tribological parameters that affect the performance of internal combustion engines by using dynamics analysis software (AVL Excite Designer). The paramount tribological parameters include friction force, frictional power losses, and oil film thickness of piston ring assembly. The piston and rings assembly is one of the highest mechanically loaded components in engines. Relevant literature reports that the piston ring assembly accounts for 40% to 50% of the frictional losses, making it imperative for the piston ring dynamics to be understood thoroughly. This analytical study of the piston ring dynamics describes the significant correlation between the tribological parameters of piston and rings assembly and the performance of engines. The model was able to predict the effects of engine speed and oil viscosity on asperity and hydrodynamic friction forces, power losses, oil film thickness and lube oil consumption. This model of mixed film lubrication of piston rings is based on the hydrodynamic action described by Reynolds equation and dry contact action as described by the Greenwood–Tripp rough surface asperity contact model. The results in the current analysis demonstrated that engine speed and oil viscosity had a remarkable effect on oil film thickness and hydrodynamic friction between the rings and cylinder liner. Hence, the mixed lubrication model, which unifies the lubricant flow under different ring–liner gaps, is needed via the balance between the hydrodynamic and boundary lubrication modes to obtain minimum friction between rings and liner and to ultimately help in improving the performance of engines.


1974 ◽  
Vol 188 (1) ◽  
pp. 253-261 ◽  
Author(s):  
G. M. Hamilton ◽  
S. L. Moore

A capacity gauge has been designed for operating in the conditions of a working engine. The method of using it for determining the oil-film thickness and piston-ring profile is described. Oil-film thicknesses in the range 0·4-2·5 μm between the piston rings and the cylinder liner have been observed. Their variation with speed, load and temperature has been measured and it is concluded that their behaviour is essentially hydrodynamic.


2020 ◽  
Vol 147 ◽  
pp. 106230
Author(s):  
Jiyeon Cheong ◽  
Stefan Wigger ◽  
Hans-Jürgen Füßer ◽  
Sebastian A. Kaiser

2019 ◽  
Vol 72 (1) ◽  
pp. 157-164
Author(s):  
Gu Xin ◽  
Xiao-Ri Liu ◽  
Dong-Kang Cheng ◽  
Qing-Ping Zheng ◽  
Meng-Han Li ◽  
...  

Purpose This paper aims to investigate the effect of lubricant viscosity model with improver on friction and lubrication of piston skirt-cylinder liner conjunction. Design/methodology/approach A dynamic calculation model is established for the piston skirt-cylinder liner conjunction of a heavy-duty commercial diesel engine, to explore the effects of two kinds of lube oil viscosity models named after polyalkyle-metacrylate-1 (PAMA1) and styrene-isoprene-copolymer (SICP) improvers on the maximum oil film viscosity, the minimum oil film thickness, the peak oil film pressure, the maximum shear rate, the friction force and the total friction power loss. Findings The variation trends with the crank angle of the above parameters are not changed with the difference of improvers, while obvious numerical differences are found except the maximum oil film pressure. The minimum oil film thickness and maximum shear rate of PAMA1 are larger than that of SICP, the maximum oil film viscosity of SICP is larger than that of PAMA1, which indicates that the shear-thinning effect of PAMA1 is greater, the maximum friction force on the piston of SICP is larger than that of PAMA1, and the total friction power consumption is also larger, the average friction power consumptions of SICP and PAMA1 are 385.4 and 262.8 W, respectively, with the relative difference of 31.8 per cent. Originality/value The influence of different lubricating oil additive models on the lubrication and friction of piston skirt-cylinder liner conjunction is simulated and analyzed.


1984 ◽  
Author(s):  
S. Furuhama ◽  
S. Sasaki ◽  
M. Kojima

2018 ◽  
Vol 179 ◽  
pp. 01020
Author(s):  
Chao-fan SHI ◽  
Pu-kai WANG ◽  
Jian-min LIU ◽  
Qi KANG ◽  
Yi DONG

Establish the piston ring-cylinder liner frictional model using the software of GT-Suite combine both of the frictional condition and lubrication, analyze and compute the thickness of oil film between piston ring and cylinder liner, the distribution of oil stress, and the force and power of the friction in rated condition. Then, mainly analyze the thickness of oil film and power of friction at the first piston ring under different temperatures of lubrication oil and different speeds. The results indicate that: The lubrication effect at first piston ring is poor, and the consumption of frictional power is high. The frictional power is significantly reduced with the oil temperature increases. However, the thickness of the oil film will decrease with the oil temperature increases, which is bad to the lubricational condition. Considering both of the lubrication condition and the frictional power, the frictional characteristics are better when the oil temperature is maintained at 80-90°C. With the increase of rotational speed, the oil film thickness and frictional power increase, but comparing with the influence on the frictional power, the change of rotational speed has less influence on the oil film.


2000 ◽  
Vol 123 (3) ◽  
pp. 633-643 ◽  
Author(s):  
D. O. Ducu ◽  
R. J. Donahue ◽  
J. B. Ghandhi

Measurement of the capacitance formed between the piston ring and a probe mounted in the cylinder liner provides an accurate means of determining the oil film thickness provided that the region between the ring and probe is flooded with oil and the dielectric constant of the oil is known. All aspects of the design, construction, installation of capacitance probes, and analysis of the resulting measurements are reviewed in this paper. Biases introduced due to the fringing of the electric field, curvature of the ring face profile, roughness of the ring profile, and the tilt angle of the ring face are analyzed, and correction algorithms are proposed. Errors associated with the proposed algorithms are gauged through comparisons to finite difference solutions. Shielding the sensing electrode is found to eliminate fringing effects and also stray capacitance which can affect the signal. A rectangular probe design with a high aspect ratio is suggested as an optimum. The small axis of the probe provides high spatial resolution, while the longer length, which is in the circumferential direction, provides a sufficient surface area to ensure sufficient signal strength. A design procedure which allows for the sizing of probe dimensions for a given level of allowable error and capacitance measuring circuitry is developed.


Sign in / Sign up

Export Citation Format

Share Document