Effect of temperature on the strength of a centrifugal compressor impeller for a turbocharger

Author(s):  
Xinqian Zheng ◽  
Lei Jin ◽  
Tao Du ◽  
Binlin Gan ◽  
Fenghu Liu ◽  
...  

High pressure ratio turbocharger technology is used to decrease fuel consumption, reduce emissions and improve power density of an internal combustion engine. The centrifugal compressor is the turbocharger’s core component. The reliability of its impeller becomes critical as the pressure ratio gets higher and the temperature starts playing an important role. In order to study the effect of the flow temperature on the reliability of a centrifugal compressor impeller, solid–fluid coupling is used to calculate the temperature distribution on the impeller surface. This temperature distribution is then applied as boundary condition in three-dimensional finite element analysis to analyze impeller stress. The results show that the percentage of impeller stress caused by thermal load remains approximately constant (about 2%) at different pressure ratios, which does not increase with increasing pressure ratio. Centrifugal load plays an absolutely critical role in the impeller stress at different pressure ratios. High pressure ratio also leads to an increase of air temperature, which causes higher material temperature and consequently the lower ultimate tensile strength of the impeller material. The maximum compressor pressure ratio which the impeller can bear decreases from 4.6 to 4.2 for the researched compressor if the effect of temperature on the ultimate tensile strength was considered. That means the effect of the temperature on compressor impeller strength and reliability at high pressure ratio should be considered while it can be ignored at low pressure ratio.

Author(s):  
Seiichi Ibaraki ◽  
Tetsuya Matsuo ◽  
Hiroshi Kuma ◽  
Kunio Sumida ◽  
Toru Suita

High pressure ratio centrifugal compressors are applied to turbochargers and turboshaft engines because of their small dimensions, high efficiency and wide operating range. Such a high pressure ratio centrifugal compressor has a transonic inlet condition accompanied with a shock wave in the inducer portion. It is generally said that extra losses are generated by interaction of the shock wave and the boundary layers on the blade surface. To improve the performance of high pressure ratio centrifugal compressor it is necessary to understand the flow phenomena. Although some research works on transonic impeller flow have been published, some unknown flow physics are still remaining. The authors designed a transonic impeller, with an inlet Mach number is about 1.3, and conducted detailed flow measurements by using Laser Doppler Velocimetry (LDV). In the result the interaction between the shock wave and tip leakage vortex at the inducer and flow distortion at the downstream of inducer were observed. The interaction of the boundary layer and the shock wave was not observed. Also computational flow analysis were conducted and compared with experimental results.


2003 ◽  
Vol 125 (2) ◽  
pp. 346-351 ◽  
Author(s):  
Seiichi Ibaraki ◽  
Tetsuya Matsuo ◽  
Hiroshi Kuma ◽  
Kunio Sumida ◽  
Toru Suita

High-pressure ratio centrifugal compressors are applied to turbochargers and turboshaft engines because of their small dimensions, high efficiency, and wide operating range. Such a high-pressure ratio centrifugal compressor has a transonic inlet condition accompanied with a shock wave in the inducer portion. It is generally said that extra losses are generated by interaction of the shock wave and the boundary layers on the blade surface. To improve the performance of high-pressure ratio centrifugal compressor, it is necessary to understand the flow phenomena. Although some research works on transonic impeller flow have been published, some unknown flow physics are still remaining. The authors designed a transonic impeller, with an inlet Mach number about 1.3, and conducted detailed flow measurements by using laser doppler velocimetry (LDV). In the result, the interaction between the shock wave and tip leakage vortex at the inducer and flow distortion at the downstream of inducer were observed. The interaction of the boundary layer and the shock wave was not observed. Also, computational flow analysis was conducted and compared with experimental results.


Author(s):  
Xinqian Zheng ◽  
Lei Jin ◽  
Yangjun Zhang ◽  
Huihua Qian ◽  
Fenghu Liu

High pressure ratio turbocharger technology is widely used to lower fuel consumption, reduce emissions and improve power density of internal combustion engines. The centrifugal compressor is the key component of turbochargers. The reliability of compressor impeller becomes critical with increasing pressure ratio. For extending its maximum rotational speed limits, it is important to improve the impeller’s disk geometry to decease stress. In order to investigate the effects of disk geometric parameters on the strength of a centrifugal compressor impeller, a 3-D finite element analysis (FEA) with various disk geometric parameters was performed in this paper. Subsequently, the impeller’s disk geometry was improved to decrease the maximum stress. The results show that the maximum von Mises equivalent stress in the core of the disk of the improved impeller could be decreased by 19%. Further, the maximum stress of another improved impeller without shaft bore decreases by 50%. That means, the improved impeller can bear higher pressure ratios or use cheaper material with lower ultimate tensile strength.


Author(s):  
Hideaki Tamaki

Centrifugal compressors used for turbochargers need to achieve a wide operating range. The author has developed a high pressure ratio centrifugal compressor with pressure ratio 5.7 for a marine use turbocharger. In order to enhance operating range, two different types of recirculation devices were applied. One is a conventional recirculation device. The other is a new one. The conventional recirculation device consists of an upstream slot, bleed slot and the annular cavity which connects both slots. The new recirculation device has vanes installed in the cavity. These vanes were designed to provide recirculation flow with negative preswirl at the impeller inlet, a swirl counterwise to the impeller rotational direction. The benefits of the application of both of the recirculation devices were ensured. The new device in particular, shifted surge line to a lower flow rate compared to the conventional device. This paper discusses how the new recirculation device affects the flow field in the above transonic centrifugal compressor by using steady 3-D calculations. Since the conventional recirculation device injects the flow with positive preswirl at the impeller inlet, the major difference between the conventional and new recirculation device is the direction of preswirl that the recirculation flow brings to the impeller inlet. This study focuses on two effects which preswirl of the recirculation flow will generate. (1) Additional work transfer from impeller to fluid. (2) Increase or decrease of relative Mach number. Negative preswirl increases work transfer from the impeller to fluid as the flow rate reduces. It increases negative slope on pressure ratio characteristics. Hence the recirculation flow with negative preswirl will contribute to stability of the compressor. Negative preswirl also increases the relative Mach number at the impeller inlet. It moves shock downstream compared to the conventional recirculation device. It leads to the suppression of the extension of blockage due to the interaction of shock with tip leakage flow.


2020 ◽  
Vol 33 (6) ◽  
pp. 04020072
Author(s):  
Wenchao Zhang ◽  
Xiao He ◽  
Baotong Wang ◽  
Zhenzhong Sun ◽  
Xinqian Zheng

Author(s):  
Yang Mingyang ◽  
Martines-botas Ricardo ◽  
Deng Kangyao ◽  
Zhang Yangjun ◽  
Zheng Xinqian

Sign in / Sign up

Export Citation Format

Share Document