Kinematic analyses of novel translational parallel manipulators

Author(s):  
Jaime Gallardo-Alvarado ◽  
Horacio Orozco-Mendoza ◽  
Alvaro Sánchez-Rodríguez ◽  
Gursel Alici

This study reports on the kinematic analyses of four translational parallel manipulators (3RPC, SPS + 2RPC, RPPR + 2RPC and RPPR + 2PPP) articulated with linear actuators. They are based on serially connected chains which are connected with cylindrical (C), prismatic (P), revolute (R), spherical (S) and universal (U) joints. Of these manipulators, the one which is a fully decoupled, fully isotropic and singularity-free translational parallel manipulator (RPPR+2PPP) offers a one-to-one correspondence between its input and output displacement. This makes its forward and inverse position analyses simpler with a set of linear equations to be solved. Although the other manipulators have coupled kinematics, they still have simpler forward kinematic equations over other well-known translational parallel manipulators reported in the literature. We also employ screw theory to undertake the velocity and acceleration analyses. The primary contribution of this manuscript is to show how the 3-RPC translational parallel manipulator can be gradually modified in order to obtain a fully isotropic, fully decoupled and singularity-free translational parallel manipulator.

2010 ◽  
Vol 44-47 ◽  
pp. 1375-1379
Author(s):  
Da Chang Zhu ◽  
Li Meng ◽  
Tao Jiang

Parallel manipulators has been extensively studied by virtues or its high force-to-weight ratio and widely spread applications such as vehicle or flight simulator, a machine tool and the end effector of robot system. However, as each limb includes several rigid joints, assembling error is demanded strictly, especially in precision measurement and micro-electronics. On the other hand, compliant mechanisms take advantage of recoverable deformation to transfer or transform motion, force, or energy and the benefits of compliant mechanisms mainly come from the elimination of traditional rigid joints, but the traditional displacement method reduce the stiffness of spatial compliant parallel manipulators. In this paper, a new approach of structure synthesis of 3-DoF rotational compliant parallel manipulators is proposed. Based on screw theory, the structures of RRS type 3-DoF rotational spatial compliant parallel manipulator are developed. Experiments via ANSYS are conducted to give some validation of the theoretical analysis.


2016 ◽  
Vol 9 (1) ◽  
Author(s):  
Wen-ao Cao ◽  
Huafeng Ding ◽  
Donghao Yang

This paper presents an approach to compliance modeling of three-translation and two-rotation (3T2R) overconstrained parallel manipulators, especially for those with multilink and multijoint limbs. The expressions of applied wrenches (forces/torques) exerted on joints are solved with few static equilibrium equations based on screw theory. A systematic method is proposed for deriving the stiffness model of a limb with considering the couplings between the stiffness along the constrained wrench and the one along the actuated wrench based on strain energy analysis. The compliance model of a 3T2R overconstrained parallel mechanism is established based on stiffness models of limbs and the static equilibrium equation of the moving platform. Comparisons show that the compliance matrix obtained from the method is close to the one obtained from a finite-element analysis (FEA) model. The proposed method has the characteristics of involving low computational efforts and considering stiffness couplings of each limb.


2004 ◽  
Vol 126 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Xianwen Kong ◽  
Cle´ment M. Gosselin

A spherical parallel manipulator (SPM) refers to a 3-DOF (degree-of-freedom) parallel manipulator generating 3-DOF spherical motion. A method is proposed for the type synthesis of SPMs based on screw theory. The wrench systems of a spherical parallel kinematic chain (SPKC) and its legs are first analyzed. A general procedure is then proposed for the type synthesis of SPMs. The type synthesis of legs for SPKCs, the type synthesis of SPKCs, as well as the selection of inputs of SPMs are dealt with in sequence. An input validity condition of SPMs is proposed. SPKCs with and without inactive joints are synthesized. The number of overconstraints of each SPKC is also given. The phenomenon of dependent joint groups in an SPKC is revealed for the first time.


Author(s):  
Raffaele Di Gregorio

A wide family of parallel manipulators (PMs) is the one that groups all the PMs with three legs where the legs become kinematic chains constituted of a passive spherical pair (S) in series with either a passive prismatic pair (P) or a passive revolute pair (R) when the actuators are locked. The topologies of the structures generated by these manipulators, when the actuators are locked, are ten. One out of these topologies is the SR-2PS topology (one SR leg and two PS legs). This paper presents an algorithm that determines all the assembly modes of the structures with topology SR-2PS in analytical form. The presented algorithm can be applied without changes to solve, in analytical form, the direct position analysis of any parallel manipulator which generates a SR-2PS structure when the actuators are locked. In particular, the closure equations of a generic structure with topology SR-2PS are written. The eliminant of this system of equations is determined and the solution procedure is presented. Finally, the proposed procedure is applied to a real case. This work demonstrates that the solutions of the direct position analysis of any parallel manipulator which generates a SR-2PS structure when the actuators are locked are at most eight.


Author(s):  
Yanwen Li ◽  
Yueyue Zhang ◽  
Lumin Wang ◽  
Zhen Huang

This paper investigates a novel 4-DOF 3-RRUR parallel manipulator, the number and the characteristics of its degrees of freedom are determined firstly, the rational input plan and the invert and forward kinematic solutions are carried out then. The corresponding numeral example of the forward kinematics is given. This type of parallel manipulators has a symmetrical structure, less accumulated error, and can be used to construct virtual-axis machine tools. The analysis in this paper will play an important role in promoting the application of such manipulators.


Author(s):  
Yulei Hou ◽  
Guoxing Zhang ◽  
Daxing Zeng

Dynamic modeling serves as the fundamental basis for dynamic performance analysis and is an essential aspect of the control scheme design of parallel manipulators. This report presents a concise and efficient solution to the dynamics of Stewart parallel manipulators based on the screw theory. The initial pose of these manipulators is described. Then the pose matrix of each link of the Stewart parallel mechanism is obtained using an inverse kinematics solution and an exponential product formula. Considering the constraint relationship between joints, the constraint matrix of the Stewart parallel manipulator is deduced. In addition, the Jacobian matrix and the twist of each link are obtained. Moreover, by deriving the differential form of the constraint matrix, the spatial acceleration of each link is obtained. Based on the force balance relationship of each link, the inverse dynamics and the general form of the dynamic model of the Stewart parallel manipulator is established and the process of inverse dynamics is summarized. The dynamic model is then verified via dynamic simulation using the ADAMS software. A numerical example is considered to demonstrate the feasibility and effectiveness of this model. The proposed dynamic modeling approach serves as a fundamental basis for structural optimization and control scheme design of the Stewart parallel manipulators.


Robotica ◽  
2012 ◽  
Vol 31 (3) ◽  
pp. 381-388 ◽  
Author(s):  
Jaime Gallardo-Alvarado ◽  
Mario A. García-Murillo ◽  
Eduardo Castillo-Castaneda

SUMMARYThis study addresses the kinematics of a six-degrees-of-freedom parallel manipulator whose moving platform is a regular triangular prism. The moving and fixed platforms are connected to each other by means of two identical parallel manipulators. Simple forward kinematics and reduced singular regions are the main benefits offered by the proposed parallel manipulator. The Input–Output equations of velocity and acceleration are systematically obtained by resorting to reciprocal-screw theory. A case study, which is verified with the aid of commercially available software, is included with the purpose to exemplify the application of the method of kinematic analysis.


2014 ◽  
Vol 6 (4) ◽  
Author(s):  
J. Jesús Cervantes-Sánchez ◽  
J. M. Rico-Martínez ◽  
V. H. Pérez-Muñoz

This paper introduces two novel dexterity indices, namely, angularity and axiality, which are used to estimate the motion sensitivity of the mobile platform of a parallel manipulator undergoing a general motion involving translation and rotation. On the one hand, the angularity index can be used to measure the sensitivity of the mobile platform to change in rotation. On the other hand, the axiality index can be used to measure the sensitivity of the operation point (OP) of the mobile platform to change in translation. Since both indices were inspired by very fundamental concepts of classical kinematics (angular velocity vector and helicoidal velocity field), they offer a clear and simple physical insight, which is expected to be meaningful to the designer of parallel manipulators. Moreover, the proposed indices do not require obtaining a dimensionally homogeneous Jacobian matrix, nor do they depend on having similar types of actuators in each manipulator's leg. The details of the methodology are illustrated by considering a classical parallel manipulator.


Author(s):  
Jaime Gallardo-Alvarado ◽  
Ramon Rodriguez-Castro ◽  
Luciano Perez-Gonzalez ◽  
Carlos R. Aguilar-Najera ◽  
Alvaro Sanchez-Rodriguez

Parallel manipulators with multiple end-effectors bring us interesting advantages over conventional parallel manipulators such as improved manipulability, workspace and avoidance of singularities. In this work the kinematics of a five-bar planar parallel manipulator equipped with two end-effectors is approached by means of the theory of screws. As an intermediate step the displacement analysis of the robot is also investigated. The input-output equations of velocity and acceleration are systematically obtained by resorting to reciprocal-screw theory. In that regard the Klein form of the Lie algebra se(3) of the Euclidean group SE(3) plays a central role. In order to exemplify the method of kinematic analysis, a case study is included. Furthermore, the numerical results obtained by means of the theory of screws are confirmed with the aid of special software like ADAMS.TM


Robotica ◽  
2009 ◽  
Vol 27 (6) ◽  
pp. 929-940 ◽  
Author(s):  
Jianguo Zhao ◽  
Bing Li ◽  
Xiaojun Yang ◽  
Hongjian Yu

SUMMARYScrew theory has demonstrated its wide applications in robot kinematics and statics. We aim to propose an intuitive geometrical approach to obtain the reciprocal screws for a given screw system. Compared with the traditional Plücker coordinate method, the new approach is free from algebraic manipulation and can be used to obtain the reciprocal screws just by inspecting the structure of manipulator. The approach is based on three observations that describe the geometrical relation for zero pitch screw and infinite pitch screw. Based on the observations, the reciprocal screw systems of several common kinematic elements are analyzed, including usual kinematic pairs and chains. We also demonstrate usefulness of the geometrical approach by a variety of applications in mobility analysis, Jacobian formulation, and singularity analysis for parallel manipulator. This new approach can facilitate the parallel manipulator design process and provide sufficient insights for existing manipulators.


Sign in / Sign up

Export Citation Format

Share Document