An experimental study of compressible combining flow at 45° T-junctions

Author(s):  
Wenhui Wang ◽  
Zhenhua Lu ◽  
Kangyao Deng ◽  
Shuan Qu

Junction flow loss is one of the sources of flow losses in many engineering pipe systems. An experimental study was carried out in order to investigate the combining steady pressure loss coefficients at 45° T-junctions with three area ratios between lateral branch and main duct. Extensive measurement data were obtained at a wide range of Mach number (0.1–0.6) and mass flow rate ratios using air as the tested fluid. Comparative analysis of the results includes the pressure difference in the two flow paths of the junction, the effect of Mach number in common branch due to gas compressibility, as well as the loss coefficients with various geometry condition. The following conclusion is drawn: the total pressure loss coefficient ( K) was mainly dependent on the Mach number ( M3), mass flow rate ratio ( q), and area ratio ( a), while almost independent on Reynolds number. The results provide reference for the research of junction flow and can be valuable in the correction of the boundary condition in one-dimensional simulation models.

2005 ◽  
Vol 127 (5) ◽  
pp. 1029-1037 ◽  
Author(s):  
L. O. Schunk ◽  
G. F. Nellis ◽  
J. M. Pfotenhauer

Growing interest in larger scale pulse tubes has focused attention on optimizing their thermodynamic efficiency. For Stirling-type pulse tubes, the performance is governed by the phase difference between the pressure and mass flow, a characteristic that can be conveniently adjusted through the use of inertance tubes. In this paper we present a model in which the inertance tube is divided into a large number of increments; each increment is represented by a resistance, compliance, and inertance. This model can include local variations along the inertance tube and is capable of predicting pressure, mass flow rate, and the phase between these quantities at any location in the inertance tube as well as in the attached reservoir. The model is verified through careful comparison with those quantities that can be easily and reliably measured; these include the pressure variations along the length of the inertance tube and the mass flow rate into the reservoir. These experimental quantities are shown to be in good agreement with the model’s predictions over a wide range of operating conditions. Design charts are subsequently generated using the model and are presented for various operating conditions in order to facilitate the design of inertance tubes for pulse tube refrigerators. These design charts enable the pulse tube designer to select an inertance tube geometry that achieves a desired phase shift for a given level of acoustic power.


2018 ◽  
Vol 22 (1 Part B) ◽  
pp. 487-494 ◽  
Author(s):  
Aminreza Noghrehabadi ◽  
Ebrahim Hajidavaloo ◽  
Mojtaba Moravej ◽  
Ali Esmailinasab

Solar collectors are the key part of solar water heating systems. The most widely produced solar collectors are flat plate solar collectors. In the present study, two types of flat plate collectors, namely square and rhombic collectors are experi?mentally tested and compared and the thermal performance of both collectors is investigated. The results show both collectors have the same performance around noon (?61%), but the rhombic collector has better performance in the morning and afternoon. The values for rhombic and square collectors are approximately 56.2% and 53.5% in the morning and 56.1% and 54% in the afternoon, respectively. The effect of flow rate is also studied. The thermal efficiency of rhombic and square flat plate collectors increases in proportion to the flow rate. The results indicated the rhombic collector had better performance in comparison with the square collector with respect to the mass-flow rate.


Author(s):  
Min Zhang ◽  
Dara W. Childs

Abstract With the increasing demand of the oil & gas industry, many pump companies are developing multiphase pumps, which can handle liquid-gas flow directly without separating the liquid from a mixed flow. The see-through labyrinth seal is one of the popular types of non-contact annular seals that act as a balancing piston seal to reduce the axial thrust of a high-performance centrifugal pump. The see-through labyrinth seal also generates reaction forces that can significantly impact the rotordynamic performance of the pump. Multiphase pumps are expected to operate from pure-liquid to pure-gas conditions. Zhang et al. (2019) conducted a comprehensive experimental study on the performance (leakage and rotordynamic coefficients) of a see-through labyrinth seal under mainly-gas conditions. This paper continues Zhang et al.’s (2019) research and studies the performance of the see-through TOS (tooth-on-stator) labyrinth seal under mainly-liquid conditions. The test seal’s inner diameter, length, and radial clearance are 89.256 mm, 66.68 mm, and 0.178 mm, respectively. The test fluid is a mixture of air and silicone oil (PSF-5cSt), and the inlet GVF (gas volume fraction) varies from zero to 12%. Tests are conducted at an exit pressure of 6.9 bars, an inlet temperature of 39.1 °C, three pressure drops PDs (27.6 bars, 34.5 bars, and 48.3 bars), and three rotating speeds ω (5 krpm, 10 krpm, and 15 krpm). The seal is always concentric with the rotor, and there is no intentional fluid pre-rotation at the seal inlet. The air presence in the oil flow significantly impacts the leakage as well as the dynamic forces of the test seal. The first air increment (increasing inlet GVF from 0% to 3%) slightly increases the leakage mass flow rate, while further air increments steadily decrease the leakage mass flow rate. For all test conditions, the leakage mass flow rate does not change as ω increases from 5 krpm to 10 krpm but decreases as ω is further increased to 15 krpm. The reduction in the leakage mass flow rate indicates that there is an increase in the friction factor, and there could be a highly possible flow regime change as ω increases from 10 krpm to 15 krpm. For ω ≤ 10 krpm, effective stiffness Keff increases as inlet GVF increases. Keff represents the test seal’s total centering force on the pump rotor. The increase of Keff increases the seal’s centering force and would increase the pump rotor’s critical speeds. Ceff indicates the test seal’s total damping force on the pump rotor. For ω ≤ 10 krpm, Ceff first decreases as inlet GVF increases from zero to 3%, and then remains unchanged as inlet GVF is further increased to 12%. For ω = 15 krpm, Keff first increases as inlet GVF increases from zero to 3% and then decreases as inlet GVF is further increased. As inlet GVF increases, Ceff steadily decreases for ω = 15 krpm.


2016 ◽  
pp. 437-444
Author(s):  
Yusuke Shintani ◽  
Tsutomu Nagaoka ◽  
Yoshikazu Deguchi ◽  
Kazunori Harada

Author(s):  
K. V. L. Narayana Rao ◽  
N. Ravi Kumar ◽  
G. Ramesha ◽  
M. Devathathan

Can type combustors are robust, with ease of design, manufacturing and testing. They are extensively used in industrial gas turbines and aero engines. This paper is mainly based on the work carried out in designing and testing a can type combustion chamber which is operated using JET-A1 fuel. Based on the design requirements, the combustor is designed, fabricated and tested. The experimental results are analysed and compared with the design requirements. The basic dimensions of the combustor, like casing diameter, liner diameter, liner length and liner hole distribution are estimated through a proprietary developed code. An axial flow air swirler with 8 vanes and vane angle of 45 degree is designed to create a re-circulation zone for stabilizing the flame. The Monarch 4.0 GPH fuel nozzle with a cone angle of 80 degree is used. The igniter used is a high energy igniter with ignition energy of 2J and 60 sparks per minute. The combustor is modelled, meshed and analysed using the commercially available ansys-cfx code. The geometry of the combustor is modified iteratively based on the CFD results to meet the design requirements such as pressure loss and pattern factor. The combustor is fabricated using Ni-75 sheet of 1 mm thickness. A small combustor test facility is established. The combustor rig is tested for 50 Hours. The experimental results showed a blow-out phenomenon while the mass flow rate through the combustor is increased beyond a limit. Further through CFD analysis one of the cause for early blow out is identified to be a high mass flow rate through the swirler. The swirler area is partially blocked and many configurations are analysed. The optimum configuration is selected based on the flame position in the primary zone. The change in swirler area is implemented in the test model and further testing is carried out. The experimental results showed that the blow-out limit of the combustor is increased to a good extent. Hence the effect of swirler flow rate on recirculation zone length and flame blow out is also studied and presented. The experimental results showed that the pressure loss and pattern factor are in agreement with the design requirements.


Micromachines ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 758
Author(s):  
Zhi-xin Gao ◽  
Ping Liu ◽  
Yang Yue ◽  
Jun-ye Li ◽  
Hui Wu

Although check valves have attracted a lot of attention, work has rarely been completed done when there is a compressible working fluid. In this paper, the swing check valve and the tilting check valve flowing high-temperature compressible water vapor are compared. The maximum Mach number under small valve openings, the dynamic opening time, and the hydrodynamic moment acting on the valve disc are chosen to evaluate the difference between the two types of check valves. Results show that the maximum Mach number increases with the decrease in the valve opening and the increase in the mass flow rate, and the Mach number and the pressure difference in the tilting check valve are higher. In the swing check valve, the hydrodynamic moment is higher and the valve opening time is shorter. Furthermore, the valve disc is more stable for the swing check valve, and there is a periodical oscillation of the valve disc in the tilting check valve under a small mass flow rate.


2017 ◽  
Vol 25 (04) ◽  
pp. 1730004 ◽  
Author(s):  
Mehdi Rasti ◽  
Ji Hwan Jeong

Capillary tubes are widely used as expansion devices in small-capacity refrigeration systems. Since the refrigerant flow through the capillary tubes is complex, many researchers presented empirical dimensionless correlations to predict the refrigerant mass flow rate. A comprehensive review of the dimensionless correlations for the prediction of refrigerants mass flow rate through straight and coiled capillary tubes depending on their geometry and adiabatic or diabatic capillary tubes depending on the flow configurations has been discussed. A comprehensive review shows that most of previous dimensionless correlations have problems such as discontinuity at the saturated lines or ability to predict the refrigerant mass flow rate only for the capillary tube subcooled inlet condition. The correlations suggested by Rasti et al. and Rasti and Jeong appeared to be general and continuous and these correlations can be used to predict the refrigerant mass flow rate through all the types of capillary tubes with wide range of capillary tube inlet conditions including subcooled liquid, two-phase mixture, and superheated vapor conditions.


2014 ◽  
Vol 136 (8) ◽  
Author(s):  
Toshiyuki Doi

Plane thermal transpiration of a rarefied gas between two walls of Maxwell-type boundaries with different accommodation coefficients is studied based on the linearized Boltzmann equation for a hard-sphere molecular gas. The Boltzmann equation is solved numerically using a finite difference method, in which the collision integral is evaluated by the numerical kernel method. The detailed numerical data, including the mass and heat flow rates of the gas, are provided over a wide range of the Knudsen number and the entire range of the accommodation coefficients. Unlike in the plane Poiseuille flow, the dependence of the mass flow rate on the accommodation coefficients shows different characteristics depending on the Knudsen number. When the Knudsen number is relatively large, the mass flow rate of the gas increases monotonically with the decrease in either of the accommodation coefficients like in Poiseuille flow. When the Knudsen number is small, in contrast, the mass flow rate does not vary monotonically but exhibits a minimum with the decrease in either of the accommodation coefficients. The mechanism of this phenomenon is discussed based on the flow field of the gas.


Sign in / Sign up

Export Citation Format

Share Document