Bending analysis of sandwich plates with composite face sheets and compliance functionally graded syntactic foam core

Author(s):  
Mohammad Javad Lashkari ◽  
Omid Rahmani

In this paper, the problem of a rectangular plate with functionally graded soft core and composite face sheets is considered using high order sandwich plate theory. This theory applies no assumptions on the displacement and stress fields in the core. Face sheets were treated using classical theory and core was exposed to the theory of elasticity. Governing equations and boundary conditions are derived using principle of virtual displacement and the governing equations are based on eight primary variables including six displacements and two shear stresses. This solution is able to present localized displacements and stresses in places where concentrated loads are exerted to the structure since the displacements in the core can take a nonlinear form which could not be seen in the previous theories such as classical and higher order shear theories. This theory is suitable for rectangular plates under all types of loadings distributed or concentrated which can be different on upper and lower face sheets at the same point. The results were compared with the published literature using theory of elasticity and showed good agreement confirming the accuracy of the present theory. Subsequently, the solution for the core with functionally graded material is presented and effectively indicates positive role of functionally graded core.

2015 ◽  
Vol 62 (2) ◽  
pp. 181-203 ◽  
Author(s):  
Jafar Rouzegar ◽  
Reza Abdoli Sharifpoor

Abstract The two-variable refined plate theory is used in this paper for the analysis of thick plates resting on elastic foundation. This theory contains only two unknown parameters and predicts parabolic variation of transverse shear stresses. It satisfies the zero traction on the plate surfaces without using shear correction factor. Using the principle of minimum potential energy, the governing equations for simply supported rectangular plates resting on Winkler elastic foundation are obtained. The Navier method is adopted for solution of obtained coupled governing equations, and several benchmark problems under various loading conditions are solved by present theory. The comparison of obtained results with other common theories shows the excellent efficiency of this theory in modeling thick plates resting on elastic foundation. Also, the effect of foundation modulus, plate thickness and type of loading are studied and the results show that the deflections are decreased by increasing the foundation modulus and plate thickness


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Van Thom Do ◽  
Van Vinh Pham ◽  
Hoang Nam Nguyen

This work gives information about the development of refined plate theory to study the static bending behavior of functionally graded material (FGM) plates. The significant advantage of our proposed theory is that only one unknown variable exists in its displacement formula and governing equation. To illustrate the accuracy and effectiveness of this theory, an analytical approach based on the Navier solution is employed to obtain the solution for static bending of simply supported FGM plates. A good agreement for static bending of FGM plates with other literature results has been instituted. This work also investigates the deflection, in-plane normal, and shear stresses of sinusoidally loaded FGM rectangular plates with four simply supported edges. The influence of some parameters on the bending performance of FGM plates is also carefully considered.


Author(s):  
Vu Ngoc Viet Hoang ◽  
Dinh Gia Ninh

In this paper, a new plate structure has been found with the change of profile according to the sine function which we temporarily call as the sinusoidal plate. The classical plate theory and Galerkin’s technique have been utilized in estimating the nonlinear vibration behavior of the new non-rectangular plates reinforced by functionally graded (FG) graphene nanoplatelets (GNPs) resting on the Kerr foundation. The FG-GNP plates were assumed to have two horizontal variable edges according to the sine function. Four different configurations of the FG-GNP plates based on the number of cycles of sine function were analyzed. The material characteristics of the GNPs were evaluated in terms of two models called the Halpin–Tsai micromechanical model and the rule of mixtures. First, to verify this method, the natural frequencies of new non-rectangular plates made of metal were compared with those obtained by the Finite Element Method (FEM). Then, the numerical outcomes are validated by comparing with the previous papers for rectangular FGM/GNP plates — a special case of this structure. Furthermore, the impacts of the thermal environment, geometrical parameters, and the elastic foundation on the dynamical responses are scrutinized by the 2D/3D graphical results and coded in Wolfram-Mathematica. The results of this work proved that the introduced approach has the advantages of being fast, having high accuracy, and involving uncomplicated calculation.


2016 ◽  
Vol 32 (5) ◽  
pp. 539-554 ◽  
Author(s):  
R. Ansari ◽  
R. Gholami ◽  
A. Shahabodini

AbstractIn this paper, a non-classical plate model capturing the size effect is developed to study the forced vibration of functionally graded (FG) microplates subjected to a harmonic excitation transverse force. To this, the modified couple stress theory (MCST) is incorporated into the first-order shear deformation plate theory (FSDPT) to account for the size effect through one length scale parameter, only. Strong form of nonlinear governing equations and associated boundary conditions are obtained using Hamilton's principle. The solution process is implemented on two domains. The generalized differential quadrature (GDQ) method is first employed to discretize the governing equations on the space domain. A Galerkin-based scheme is then applied to extract a reduced set of the nonlinear equations of Duffing-type. On the second domain, through a time differentiation matrix operator, the set of ordinary differential equations are transformed into the discrete form on time domain. Eventually, a system of the parameterized nonlinear equations is acquired and solved via the pseudo-arc length continuation method. The frequency response curve of the microplate is sketched and the effects of various material and geometrical parameters on it are evaluated.


2011 ◽  
Vol 217-218 ◽  
pp. 1319-1323
Author(s):  
Yao Dai ◽  
Jun Feng Liu ◽  
Peng Zhang

For homogeneous material plates and non-homogeneous material plates, the crack-tip field plays an important role in the research of fracture mechanics. However, the governing equations become the system of the sixth order partial differential ones with the variable coefficients when the material gradient is perpendicular to the thickness direction of plates. In this paper, they are derived first. Then, the crack-tip fields of the plates of radial functionally graded materials (FGMs) are studied and the higher order crack-tip fields are obtained based on the Reissner’s plate theory. The results show the effect of the non-homogeneity on the crack-tip fields explicitly and become the same as solutions of the homogeneous material plates as the non-homogeneous parameter approaches zero.


2014 ◽  
Vol 11 (04) ◽  
pp. 1350062 ◽  
Author(s):  
MOHAMED ATIF BENATTA ◽  
ABDELHAKIM KACI ◽  
ABDELOUAHED TOUNSI ◽  
MOHAMMED SID AHMED HOUARI ◽  
KARIMA BAKHTI ◽  
...  

The novelty of this paper is the use of four variable refined plate theory for nonlinear analysis of plates made of functionally graded materials. The plates are subjected to pressure loading and their geometric nonlinearity is introduced in the strain–displacement equations based on Von–Karman assumptions. Unlike any other theory, the theory presented gives rise to only four governing equations. Number of unknown functions involved is only four, as against five in case of simple shear deformation theories of Mindlin and Reissner (first shear deformation theory). The plate properties are assumed to be varied through the thickness following a simple power law distribution in terms of volume fraction of material constituents. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The fundamental equations for functionally graded plates are obtained using the Von–Karman theory for large deflection and the solution is obtained by minimization of the total potential energy. Numerical results for functionally graded plates are given in dimensionless graphical forms; and the effects of material properties on deflections and stresses are determined. The results obtained for plate with various thickness ratios using the theory are not only substantially more accurate than those obtained using the CPT, but are almost comparable to those obtained using higher order theories having more number of unknown functions.


2017 ◽  
Vol 21 (2) ◽  
pp. 727-757 ◽  
Author(s):  
Rafik Meksi ◽  
Samir Benyoucef ◽  
Abdelkader Mahmoudi ◽  
Abdelouahed Tounsi ◽  
El Abbas Adda Bedia ◽  
...  

In this study, a new shear deformation plate theory is introduced to illustrate the bending, buckling and free vibration responses of functionally graded material sandwich plates. A new displacement field containing integrals is proposed which involves only four variables. Based on the suggested theory, the equations of motion are derived from Hamilton’s principle. This theory involves only four unknown functions and accounts for quasi-parabolic distribution of transverse shear stress. In addition, the transverse shear stresses are vanished at the top and bottom surfaces of the sandwich plate. The Navier solution technique is adopted to derive analytical solutions for simply supported rectangular sandwich plates. The accuracy and effectiveness of proposed model are verified by comparison with previous research. A detailed numerical study is carried out to examine the influence of the critical buckling loads, deflections, stresses, natural frequencies and sandwich plate type on the bending, buckling and free vibration responses of functionally graded sandwich plates.


2021 ◽  
Vol 891 ◽  
pp. 116-121
Author(s):  
Aleksander Muc

In this paper optimal design of free vibrations for functionally graded plates is studied using the analytical methods. The analytical methods can be employed for the solution of six of 21 arbitrary boundary conditions (the combinations of clamped, simply supported and free). The influence of various models of porosity and forms of different reinforcements with nanoplatelets and carbon nanotubes are investigated, including variations of stiffness/density along the thickness of a plate. The analysis is carried out for the classical plate theory. Parametric studies illustrate the possibility of increasing natural frequencies and the necessity of implementing the optimization techniques to find the best solutions from the engineering point of view.


Sign in / Sign up

Export Citation Format

Share Document