A continuous adjoint-based aeroacoustic shape optimization for multi-mode duct acoustics

Author(s):  
Sheng Qiu

A multi-mode adjoint-based optimization method is proposed for the noise reduction optimization in multi-mode duct acoustics problems. The objective is to minimize the amplitude of sound from an inlet duct on the wall and integral line while maintaining the aerodynamic performance. The complete detailed derivation of the adjoint equations and their corresponding adjoint boundary conditions are presented firstly based on the multi-mode linear Euler equations. With the solved adjoint variables, the final expression of the cost function gradient with respect to the design variables is formulated. The sensitivity derivative computed by the continuous adjoint method is validated by comparing with that obtained using finite difference method. Up to 50 design variables are involved in the adjoint optimization to ensurely provide an adequate design space. And a quasi-Newton Broyden–Fletcher–Goldfarb–Shanno algorithm is utilized to determine an improved intake duct geometry based on the objective function gradient provided by the adjoint solution. Finally, two multi-mode optimization of a typical inlet duct confirms the flexibility of the multi-mode adjoint-based framework and the efficiency of the multi-mode adjoint-based technique.

Author(s):  
M. Zeinalpour ◽  
K. Mazaheri ◽  
A. Irannejad

A gradient based optimization using the continuous adjoint method for inverse design of a turbine blade cascade is presented. The advantage of the adjoint method is that the objective function gradients can be evaluated by solving the adjoint equations with coefficients depending on the flow variables. This method is particularly suitable for aerodynamic design optimization for which the number of design variables is large. Bezier polynomials are used to parameterize suction side of the turbine blade. The numerical convective fluxes of both flow and adjoint equations are computed by using a Roe-type approximate Riemann solver. An approximate linearization is applied to simplify the calculation of the numerical flux of adjoint variables on the faces of computational cell. The problem examined is that of the inverse design of NASA C3X blade that reproduces a given pressure distributions over its surfaces. Adjoint results show a good agreement with those obtained by finite-difference method.


Author(s):  
Yingchen Li ◽  
Dianliang Yang ◽  
Zhenping Feng

There are various methods for aerodynamic shape design in turbomachinery blades, but at the state of the art the shape design has still been a formidable problem. Optimal shape design based on adjoint method has been developed rapidly in the last decades in aeronautic field with the start of Jameson’s work. As a gradient-based optimization, the adjoint method introduces an adjoint system and the sensitivity derivative is computed by solving a linear adjoint equation, which makes the computational cost almost independent of the number of design variables. Because the adjoint method realizes the quick and exact sensitivity analysis and saves large computational resources, it has been the highlight in aerodynamic shape design of CFD field. Combining the continuous adjoint method with quasi-Newton method, we developed an optimization algorithm for turbomachinery aerodynamic design governed by two-dimensional Euler equations in this paper. The blade shape to be optimized is parameterized by non-uniform B-spline and the computational domain is discreted with H-grids. Then the adjoint equations and their boundary conditions are deduced in detail, both in computational and physical spaces, and are solved numerically by using time-marching finite difference method based on Jameson’s diffusion scheme. With the solved adjoint variables, the final expression of the cost function gradient with respect to the design variables is formulated. Finally, several numerical cases of turbomachinery blade aerodynamic design are presented and analyzed to validate the present optimization algorithm.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Wenjing Yan ◽  
Feifei Jing ◽  
Jiangyong Hou ◽  
Zhiming Gao ◽  
Nannan Zheng

This work is concerned with the shape optimal design of an obstacle immersed in the Stokes–Brinkman fluid, which is also coupled with a thermal model in the bounded domain. The shape optimal problem is formulated and analyzed based on the framework of the continuous adjoint method, with the advantage that the computing cost of the gradients and sensitivities is independent of the number of design variables. Then, the velocity method is utilized to describe the domain deformation, and the Eulerian derivative for the cost functional is established by applying the differentiability of a minimax problem based on the function space parametrization technique. Moreover, an iterative algorithm is proposed to optimize the boundary of the obstacle in order to reduce the total dissipation energy. Finally, numerical examples are presented to illustrate the feasibility and effectiveness of our method.


Author(s):  
Pengfei Zhang ◽  
Juan Lu ◽  
Zhiduo Wang ◽  
Liming Song ◽  
Zhenping Feng

In this paper, based on the grid node coordinates variation and Jacobian Matrices, the turbulent continuous adjoint method with linearized turbulence model is studied and developed to fully account for the variation of turbulent eddy viscosity. The corresponding adjoint equations, boundary conditions and the final sensitivities are formulated with a general expression. To implement the adjoint optimization of the transition flow, a flow solver combining the transition model with the turbulence model is employed, and an adjoint optimization framework with linearized SST turbulence model and a frozen Gamma-Theta transition model is established. In order to choose an appropriate objective for the transition flow optimization, four objectives are studied, including the entropy generation, the total pressure loss coefficient, the field integral of turbulent kinetic energy, the area ratio of transition and turbulent regions to the suciton side. And finally the entropy generation is adopted as the objective. Then, the derivation of the adjoint system for the entropy generation optimization is presented. To demonstrate the validity of the adjoint system for transition flow, four shape optimizations for the bypass transitions and the separation-induced transition are implemented. A 2D isentropic case for bypass transitions is conducted to compares the performances of the fully turbulent adjoint system and the frozen Gamma-Theta transition adjoint system, while the other isothermal case is performed to take the aerodynamic and heat transfer issues into account together. The case of separation-induced transition is performed and also consistent well with its flow mechanism. The four optimization results illustrate the effectiveness of the adjoint system for the transition flow optimization, which can improves the performance of overall cascades and the transition region.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 774
Author(s):  
Haitao Luo ◽  
Rong Chen ◽  
Siwei Guo ◽  
Jia Fu

At present, hard coating structures are widely studied as a new passive damping method. Generally, the hard coating material is completely covered on the surface of the thin-walled structure, but the local coverage cannot only achieve better vibration reduction effect, but also save the material and processing costs. In this paper, a topology optimization method for hard coated composite plates is proposed to maximize the modal loss factors. The finite element dynamic model of hard coating composite plate is established. The topology optimization model is established with the energy ratio of hard coating layer to base layer as the objective function and the amount of damping material as the constraint condition. The sensitivity expression of the objective function to the design variables is derived, and the iteration of the design variables is realized by the Method of Moving Asymptote (MMA). Several numerical examples are provided to demonstrate that this method can obtain the optimal layout of damping materials for hard coating composite plates. The results show that the damping materials are mainly distributed in the area where the stored modal strain energy is large, which is consistent with the traditional design method. Finally, based on the numerical results, the experimental study of local hard coating composites plate is carried out. The results show that the topology optimization method can significantly reduce the frequency response amplitude while reducing the amount of damping materials, which shows the feasibility and effectiveness of the method.


2021 ◽  
Vol 11 (2) ◽  
pp. 850
Author(s):  
Dokkyun Yi ◽  
Sangmin Ji ◽  
Jieun Park

Artificial intelligence (AI) is achieved by optimizing the cost function constructed from learning data. Changing the parameters in the cost function is an AI learning process (or AI learning for convenience). If AI learning is well performed, then the value of the cost function is the global minimum. In order to obtain the well-learned AI learning, the parameter should be no change in the value of the cost function at the global minimum. One useful optimization method is the momentum method; however, the momentum method has difficulty stopping the parameter when the value of the cost function satisfies the global minimum (non-stop problem). The proposed method is based on the momentum method. In order to solve the non-stop problem of the momentum method, we use the value of the cost function to our method. Therefore, as the learning method processes, the mechanism in our method reduces the amount of change in the parameter by the effect of the value of the cost function. We verified the method through proof of convergence and numerical experiments with existing methods to ensure that the learning works well.


2014 ◽  
Vol 496-500 ◽  
pp. 429-435
Author(s):  
Xiao Ping Zhong ◽  
Peng Jin

Firstly, a two-level optimization procedure for composite structure is investigated with lamination parameters as design variables and MSC.Nastran as analysis tool. The details using lamination parameters as MSC.Nastran input parameters are presented. Secondly, with a proper equivalent stiffness laminate built to substitute for the lamination parameters, a two-level optimization method based on the equivalent stiffness laminate is proposed. Compared with the lamination parameters-based method, the layer thicknesses of the equivalent stiffness laminate are adopted as continuous design variables at the first level. The corresponding lamination parameters are calculated from the optimal layer thicknesses. At the second level, genetic algorithm (GA) is applied to identify an optimal laminate configuration to target the lamination parameters obtained. The numerical example shows that the proposed method without considering constraints of lamination parameters can obtain better optimal results.


2013 ◽  
Vol 756-759 ◽  
pp. 3466-3470
Author(s):  
Xu Min Song ◽  
Qi Lin

The trajcetory plan problem of spece reandezvous mission was studied in this paper using nolinear optimization method. The optimization model was built based on the Hills equations. And by analysis property of the design variables, a transform was put forward , which eliminated the equation and nonlinear constraints as well as decreaseing the problem dimensions. The optimization problem was solved using Adaptive Simulated Annealing (ASA) method, and the rendezvous trajectory was designed.The method was validated by simulation results.


Author(s):  
Kohei Yuge ◽  
Nobuhiro Iwai ◽  
Noboru Kikuchi

Abstract A topology optimization method for plates and shells subjected to plastic deformations is presented. The algorithms is based on the generalized layout optimization method invented by Bendsϕe and Kikuchi (1988), where an admissible design domain is assumed to be composed of microstructures with periodic cavities. The sizes of the cavities and the rotational angles of the microstructures are design variables which are optimized so as to minimize the applied work. The macroscopic material tensor for the porous material is numerically calculated by the homogenization method for the sensitivity analysis. In this paper, the method is applied to two-dimensional elasto-plastic problems. A database of the material tensor and its interpolation technique are presented. The algorithm is expanded into thin shells subjected to finite deformations. Several numerical examples are shown to demonstrate the effectiveness of these algorithms.


2013 ◽  
Vol 655-657 ◽  
pp. 435-444
Author(s):  
Dong Xia Niu ◽  
Xian Yi Meng ◽  
Ai Hua Zhu

In the case of multiple loading conditions, a moving blade adjustable axial flow fan structure parameters are optimized by ANSYS. It is to achieve greater efficiency and less noise for the optimization goal. For different conditions, establish efficiency, noise comprehensive objective function using weighted coefficient method. Select impeller diameter, the wheel hub ratio, leaf number, lift coefficient, speed as design variables, Choose blade installation Angle, the wheel hub place dynamic load coefficient, cascade consistency, allowable safety coefficient as optimization of the state variables. Design variables contain continuous variables and discrete variable. Through the optimization method, we get the optimal structure parameters finally. And at the same time get the corresponding optimal blade installation Angle,under different working conditions.


Sign in / Sign up

Export Citation Format

Share Document