duct acoustics
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 6)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
pp. 116687
Author(s):  
Jean Boulvert ◽  
Thomas Humbert ◽  
Vicente Romero-García ◽  
Gwénaël Gabard ◽  
Edith Roland Fotsing ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4292
Author(s):  
Kirill Kabalyk ◽  
Andrzej Jaeschke ◽  
Grzegorz Liśkiewicz ◽  
Michał Kulak ◽  
Tomasz Szydłowski ◽  
...  

The article describes an assessment of possible changes in constant fatigue life of a medium flow-coefficient centrifugal compressor impeller subject to operation at close-to-surge point. Some aspects of duct acoustics are additionally analyzed. The experimental measurements at partial load are presented and are primarily used for validation of unidirectionally coupled fluid-structural numerical model. The model is based on unsteady finite-volume fluid-flow simulations and on finite-element transient structural analysis. The validation is followed by the model implementation to replicate the industry-scale loads with reasonably higher rotational speed and suction pressure. The approach demonstrates satisfactory accuracy in prediction of stage performance and unsteady flow field in vaneless diffuser. The latter is deduced from signal analysis relying on continuous wavelet transformations. On the other hand, it is found that the aerodynamic incidence losses at close-to-surge point are underpredicted. The structural simulation generates considerable amounts of numerical noise, which has to be separated prior to evaluation of fluid-induced dynamic strain. The main source of disturbance is defined as a stationary region of static pressure drop caused by flow contraction at volute tongue and leading to first engine-order excitation in rotating frame of reference. Eventually, it is concluded that the amplitude of excitation is too low to lead to any additional fatigue.


2021 ◽  
Author(s):  
Erkan Dokumacı
Keyword(s):  

2020 ◽  
Vol 10 (11) ◽  
pp. 3853
Author(s):  
Roberto Citarella ◽  
Luigi Federico ◽  
Mattia Barbarino

This Special Issue highlights the latest enhancements in the abatement of noise and vibrations of aerospace and automotive systems. The reduction of acoustic emissions and the improvement of cabin interior comfort are on the path of all major transportation industries, having a direct impact on customer satisfaction and, consequently, the commercial success of new products. Topics covered in this Special Issue deal with computational, instrumentation and data analysis of noise and vibrations of fixed wing aircrafts, satellites, spacecrafts, automotives and trains, ranging from aerodynamically generated noise to engine noise, sound absorption, cabin acoustic treatments, duct acoustics and vibroacoustic properties of materials. The focus of this Special Issue is also related to industrial aspects, e.g.,: numerical and experimental studies have been performed for an existing and commercialized engine to enable design improvements aimed at reducing noise and vibrations; moreover, an optimization is provided for the design of low vibroacoustic volute centrifugal compressors and fans whose fluids should be strictly kept in the system without any leakage. Existing procedures and algorithms useful to reach the abovementioned objectives in the most efficient way are illustrated in the collected papers.


2019 ◽  
Vol 146 (4) ◽  
pp. 3074-3074
Author(s):  
Stefan Sack ◽  
Cheng Yang ◽  
Mats Åbom
Keyword(s):  

2018 ◽  
Vol 135 ◽  
pp. 37-47 ◽  
Author(s):  
Mina Wagih Nashed ◽  
Tamer Elnady ◽  
Mats Åbom

Author(s):  
Sheng Qiu

A multi-mode adjoint-based optimization method is proposed for the noise reduction optimization in multi-mode duct acoustics problems. The objective is to minimize the amplitude of sound from an inlet duct on the wall and integral line while maintaining the aerodynamic performance. The complete detailed derivation of the adjoint equations and their corresponding adjoint boundary conditions are presented firstly based on the multi-mode linear Euler equations. With the solved adjoint variables, the final expression of the cost function gradient with respect to the design variables is formulated. The sensitivity derivative computed by the continuous adjoint method is validated by comparing with that obtained using finite difference method. Up to 50 design variables are involved in the adjoint optimization to ensurely provide an adequate design space. And a quasi-Newton Broyden–Fletcher–Goldfarb–Shanno algorithm is utilized to determine an improved intake duct geometry based on the objective function gradient provided by the adjoint solution. Finally, two multi-mode optimization of a typical inlet duct confirms the flexibility of the multi-mode adjoint-based framework and the efficiency of the multi-mode adjoint-based technique.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Hanbo Jiang ◽  
Alex Siu Hong Lau ◽  
Xun Huang

Acoustic liner optimization calls for very efficient simulation methods. A highly efficient and straightforward algorithm is proposed here for the Wiener–Hopf solver, which also takes advantage of the parallel processing capability of the emerging graphics processing unit (GPU) technology. The proposed algorithm adopts a simple concept that re-arranges the formulations of the Wiener–Hopf solver to appropriate matrix forms. This concept was often overlooked but is surprisingly succinct, which leads to a stunningly efficient computational performance. By examining the computational performance of two representative setups (lined duct and duct radiations), the current study shows the superior performance of the proposed algorithm, particularly with GPU. The much improved computational efficiency further suggests the potential of the proposed algorithm and the use of GPU for practical low-noise aircraft engine design and optimization.


Sign in / Sign up

Export Citation Format

Share Document