Investigations on surface roughness and tribology of miniature brass gears manufactured by abrasive water jet machining

Author(s):  
Thobi Phokane ◽  
Kapil Gupta ◽  
Munish Kumar Gupta

Surface roughness parameters are important indicators for determining the operating performance, tribology behavior, wear and tear characteristics, and service life of engineered parts including gears. This article presents the investigation on surface roughness, and tribology and wear aspects of miniature brass gears manufactured by abrasive water jet machining. Experiments have been conducted based on Taguchi's robust design technique with L9 orthogonal array to machine external spur-type miniature gears of brass having 8.4 mm pitch diameter, 12 teeth, and 5 mm thickness. The effect of three important process parameters namely water jet pressure, abrasive mass flow rate, and stand-off distance on mean roughness depth of miniature gears are analyzed. Surface roughness is found to decrease with the increase in the water jet pressure and abrasive mass flow rate, and increases with the increase in the stand-off distance. Particle swarm optimization technique has been used for parametric optimization to minimize the surface roughness of miniature gears. Confirmation experiment conducted at optimized abrasive water jet machining parameters resulted in superfine surface finish with mean roughness depth value of 4.1 µm superior than the finish obtained by other advanced processes for brass gears. The investigated values of bearing area characteristics, skewness, kurtosis, and friction coefficient confirm the tribological fitness of the miniature brass gear machined at optimum abrasive water jet machining parameters.

2017 ◽  
Vol 51 (24) ◽  
pp. 3373-3390 ◽  
Author(s):  
Ajit Dhanawade ◽  
Shailendra Kumar

The present article focuses on mechanism of delamination and kerf geometry in abrasive water jet machining of carbon epoxy composite. In the present study, four process parameters of abrasive water jet machining namely hydraulic pressure, traverse rate, stand-off distance, and abrasive mass flow rate are considered. The experiments are performed on the basis of response surface methodology as a statistical design of experiment approach. Delamination in machined samples is observed by using scanning electron microscope. Analysis of variance is performed in order to investigate the influence of process parameters on delamination, kerf taper ratio, and kerf top width. It is found that delamination decreases with increase in pressure and abrasive mass flow rate and decrease in stand-off distance and traverse rate. Kerf taper ratio decreases with increase in pressure and decrease in traverse rate and stand-off distance. Kerf top width decreases with decrease in stand-off distance and increase in traverse rate. Based on analysis, mathematical models are developed to predict the maximum delamination length, kerf taper ratio, and kerf top width. Further, a multi-response optimization is performed on the basis of desirability function to minimize delamination, kerf taper ratio, and kerf top width.


2018 ◽  
Vol 53 (20) ◽  
pp. 2909-2924 ◽  
Author(s):  
Ajit Dhanawade ◽  
Shailendra Kumar

Traditional machining of carbon epoxy composite material is difficult due to excessive tool wear, excessive stresses and heat generation, delamination, high surface waviness, etc. In the present paper, research work involved in the experimental study of abrasive water jet machining of carbon epoxy composite material is described. The aim of present work is to improve surface finish and studying defects in machined samples. Taguchi's orthogonal array approach is used to design experiments. Process parameters namely hydraulic pressure, traverse rate, stand-off distance and abrasive mass flow rate are considered for this study. Analysis of machined surfaces and kerf quality is carried out using scanning electron microscope to evaluate microscopic features. Further, the effect of machining parameters on surface roughness is investigated using analysis of variance approach. It is found that traverse rate and pressure are most significant parameters to control surface roughness. Optimization of process parameters is performed using grey relational analysis. Thereafter, confirmation tests are carried out to verify the improvement in the surface quality with optimum set of process parameters. It is found that surface finish of machined samples is improved by 10.75% with optimum levels of process parameters. Defects like delamination, fiber pull-out and abrasive embedment are also studied using SEM. It is observed that delamination and fiber pull-out are prominent in samples machined at low pressure and high traverse rate.


2019 ◽  
Vol 895 ◽  
pp. 301-306
Author(s):  
Keshav Kashyap ◽  
S. Srinivas

This study evaluates the effect of process parameters on depth of penetration and surface roughness in abrasive waterjet (AWJ) cutting of copper. Full factorial experiments are carried out on trapezoidal blocks for each of the three abrasive particle sizes used. Experimental parameters - abrasive mass flow rate, water jet pressure and traverse speed are varied at three levels. Main effects and contributions of process parameters to depth of penetration and surface roughness is calculated. From the data, it is observed that, high abrasive mass flow rate, high water jet pressure and low traverse speed resulted in higher depth of penetration and a high abrasive mass flow rate, high water jet pressure and low traverse speed resulted in lesser Ra value. Using experimental data a statistical model for predicting depth of penetration & surface roughness is developed. Error between experimental and statistical values are compared to validate the statistical model. The maximum DOP of 49.32mm was observed at AMFR=405.4 g/min, P=300 MPa, TS=60 mm/min, MS=60 Mesh and minimum DOP of 4.27mm was observed at AMFR=200 g/min, P=100 MPa, TS=90 mm/min, MS=80 Mesh.


2014 ◽  
Vol 77 (1-4) ◽  
pp. 763-774 ◽  
Author(s):  
Pavol Hreha ◽  
Agáta Radvanská ◽  
Sergej Hloch ◽  
Vincent Peržel ◽  
Grzegorz Królczyk ◽  
...  

Author(s):  
Puneet Kumar ◽  
Ravi Kant

The present paper describes an experimental study of abrasive water jet machining (AWJM) of Kevlar epoxy composite. Influence of process parameters namely stand-off distance, water pressure, traverse speed and abrasive mass flow rate on surface roughness and kerf taper is investigated. Taguchi orthogonal approach is applied to plan the design of experiments; and subsequent analysis of experimental data is done using analysis of variance (ANOVA). It is found that water pressure and traverse speed are most significant parameters followed by stand-off distance and abrasive mass flow rate influencing surface roughness and kerf taper. With increase in water pressure and decrease in traverse speed, kerf taper and surface roughness decreases.


Author(s):  
LEELADHAR NAGDEVE ◽  
VEDANSH CHATURVEDI ◽  
JYOTI VIMAL

In this paper, Taguchi method is applied to find optimum process parameter for Abrasive water jet machining (AWJM). Abrasive water jet machining is a non–traditional process of removal of material by impact erosion of high pressure, high velocity of water and entrained high velocity of grit abrasives on a work piece. Experimental investigation were conducted to assess the influence of abrasive water jet machining (AWJM) process parameters on MRR and surface Roughness (Ra) of aluminium. The approach was based on Taguchi’s method and analysis of variance (ANOVA) to optimize the AWJM process parameter for effective machining and to predict the optimal choice for each AWJM parameter such as pressure, standoff distance, Abrasive flow rate and Traverse rate. For each combination of orthogonal array we have conducted three experiments and with the help of ANOVA it is found that these parameters have a significant influence on machining characteristics such as metal removal rate (MRR) and surface roughness (SR). The analysis of the Taguchi method reveals that, in general the standoff distance significantly affects the MRR while, Abrasive flow rate affects the surface Roughness. Experiments are carried out using (L9) orthogonal array by varying pressure, sta


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2033
Author(s):  
Amjid Khan ◽  
Muhammad Irfan ◽  
Usama Muhammad Niazi ◽  
Imran Shah ◽  
Stanislaw Legutko ◽  
...  

Downsizing in engine size is pushing the automotive industry to operate compressors at low mass flow rate. However, the operation of turbocharger centrifugal compressor at low mass flow rate leads to fluid flow instabilities such as stall. To reduce flow instability, surface roughness is employed as a passive flow control method. This paper evaluates the effect of surface roughness on a turbocharger centrifugal compressor performance. A realistic validation of SRV2-O compressor stage designed and developed by German Aerospace Center (DLR) is achieved from comparison with the experimental data. In the first part, numerical simulations have been performed from stall to choke to study the overall performance variation at design conditions: 2.55 kg/s mass flow rate and rotational speed of 50,000 rpm. In second part, surface roughness of magnitude range 0–200 μm has been applied on the diffuser shroud to control flow instability. It was found that completely rough regime showed effective quantitative results in controlling stall phenomena, which results in increases of operating range from 16% to 18% and stall margin from 5.62% to 7.98%. Surface roughness as a passive flow control method to reduce flow instability in the diffuser section is the novelty of this research. Keeping in view the effects of surface roughness, it will help the turbocharger manufacturers to reduce the flow instabilities in the compressor with ease and improve the overall performance.


BioResources ◽  
2014 ◽  
Vol 10 (1) ◽  
Author(s):  
Rongrong Li ◽  
Mats Ekevad ◽  
Xiaolei Guo ◽  
Jianwen Ding ◽  
Pingxiang Cao

Sign in / Sign up

Export Citation Format

Share Document