Mechanical properties of hexagonal boron nitride monolayers: Finite element and analytical predictions

Author(s):  
SK Georgantzinos ◽  
K Kariotis ◽  
GI Giannopoulos ◽  
NK Anifantis

The mechanical response of two-dimensional nanostructures may be significantly affected by their size. In this work, a molecular structural mechanics model is developed and is implemented in order to predict the nanomechanical behavior and calculate the corresponding elastic properties of hexagonal boron nitride sheets and describe their size-dependence. The finite element approach utilizes appropriate spring-like elements for the modeling of interactions between atoms within the hexagonal boron nitride structure, the stiffness constants of which are obtained by the molecular mechanics theory. Adopting conventional finite element techniques, the global stiffness matrix of the structure of a desired sheet size can be assembled. Applying appropriate boundary conditions, the governing equilibrium static equation can be solved and the elastic mechanical properties as Young’s modulus, shear modulus, and Poisson’s ratio of the structure can be calculated. Fitting the results of the mechanical properties calculated by the finite element analysis, analytical–empirical equations are proposed for their direct prediction for an hexagonal boron nitride sheet having the size parameters of the structure as independent variables.

Author(s):  
Seyed Hamid Reza Sanei ◽  
Randall Doles

Abstract The aim of this study is to present a representative volume element (RVE) for nanocomposites with different microstructural features using a stochastic finite element approach. To that end, computer-simulated microstructures of nanocomposites were generated to include a variety of uncertainty present in geometry, orientation, and distribution of carbon nanotubes. Microstructures were converted into finite element models based on an image-based approach for the determination of elastic properties. For each microstructure type, 50 realizations of synthetic microstructures were generated to capture the variability as well as the average values. Computer-simulated microstructures were generated at different length scales to determine the change in mechanical properties as a function of length scale. A representative volume element is defined at a length scale beyond which no change in variability is observed. The results show that there is no universal RVE applicable to all properties and microstructures; however, the RVE size is highly dependent on microstructural features. Microstructures with agglomeration tend to require larger RVE. Similarly, random microstructures require larger RVE when compared with aligned microstructures.


2011 ◽  
Vol 250-253 ◽  
pp. 1050-1053
Author(s):  
Jun Ho Shin ◽  
Nam Yong Jee ◽  
Leslie J. Struble ◽  
R. James Kirkpatrick

The objective of this study is to develop a numerical model based on microstructural images of concrete and fundamental material properties of each constituent of concrete subjected to alkali-silica reaction (ASR). A microstructure-based finite element approach is employed directly to analyze the mechanical response of concrete to ASR. The modeling work involves acquiring and processing of microstructural images of specimens suffering from ASR using scanning electron microscopy, and implementing finite element program to analyze the microstructural images. The formulation of this model is based on pressure caused by the ASR product and on properties such as Young’s modulus and Poisson’s ratio. The finite element analysis program used to simulate structural behavior of structures attacked by ASR is object-oriented finite element developed at National Institute of Standards and Technology. The numerical results from this model are compared with experimental data, which have been measured using ASTM standard test C1260. The results show that the development and widening of cracks by formation and swelling of ASR gel cause the majority of expansion of mortar specimens rather than elastic elongation due to gel swelling.


2021 ◽  
Vol 11 (2) ◽  
pp. 858
Author(s):  
Mara Terzini ◽  
Andrea Di Pietro ◽  
Alessandro Aprato ◽  
Stefano Artiaco ◽  
Alessandro Massè ◽  
...  

Acetabular fractures have a high impact on patient’s quality of life, and because acetabular fractures are high energy injuries, they often co-occur with other pathologies such as damage to cartilage that could increase related morbidity; thus, it appears of primary importance developing reliable treatments for this disease. This work aims at the evaluation of the biomechanical performances of non-conservative treatments of acetabular fractures through a finite element approach. Two pelvic plates models (the standard suprapectineal plate—SPP, and a suprapectineal quadrilateral surface buttressing plate—SQBP) were analyzed when implanted on transverse or T-shaped fractures. The plates geometries were adapted to the specific hemipelvis, mimicking the bending action that the surgeon performs on the plate intraoperatively. Implemented models were tested in a single leg stance condition. The obtained results show that using the SQBP plate in transverse and T-shaped acetabular fractures generates lower bone stress if compared to the SPP plate. Interfragmentary movement analysis shows that the SQBP plate guarantees greater stability in transverse fractures. In conclusion, the SQBP plate seems worthy of further clinical analysis, having resulted as a promising option in the treatment of transverse and T-shaped acetabular fractures, able to reduce bone stress values and to get performances comparable, and in some cases superior, to traditional fixation.


2011 ◽  
Vol 243-249 ◽  
pp. 1461-1465
Author(s):  
Chuan Min Zhang ◽  
Chao He Chen ◽  
Ye Fan Chen

The paper makes an analysis of the reinforced concrete beams with exterior FRP Shell in Finite Element, and compares it with the test results. The results show that, by means of this model, mechanical properties of reinforced concrete beams with exterior FRP shell can be predicted better. However, the larger the load, the larger deviation between calculated values and test values. Hence, if more accurate calculation is required, issues of contact interface between the reinforced concrete beams and the FRP shell should be taken into consideration.


2019 ◽  
Vol 86 ◽  
pp. 149-159 ◽  
Author(s):  
Yekutiel Katz ◽  
Gal Dahan ◽  
Jacob Sosna ◽  
Ilan Shelef ◽  
Evgenia Cherniavsky ◽  
...  

2021 ◽  
pp. 073168442199086
Author(s):  
Yunfei Qu ◽  
Dian Wang ◽  
Hongye Zhang

The double V-wing honeycomb can be applied in many fields because of its lower mass and higher performance. In this study, the volume, in-plane elastic modulus and unit cell area of the double V-wing honeycomb were analytically derived, which became parts of the theoretical basis of the novel equivalent method. Based on mass, plateau load, in-plane elastic modulus, compression strain and energy absorption of the double V-wing honeycomb, a novel equivalent method mapping relationship between the thickness–width ratio and the basic parameters was established. The various size factor of the equivalent honeycomb model was denoted as n and constructed by the explicit finite element analysis method. The mechanical properties and energy absorption performance for equivalent honeycombs were investigated and compared with hexagonal honeycombs under dynamic impact. Numerical results showed a well coincidence for each honeycomb under dynamic impact before 0.009 s. Honeycombs with the same thickness–width ratio had similar mechanical properties and energy absorption characteristics. The equivalent method was verified by theoretical analysis, finite element analysis and experimental testing. Equivalent honeycombs exceeded the initial honeycomb in performance efficiency. Improvement of performance and weight loss reached 173.9% and 13.3% to the initial honeycomb. The double V-wing honeycomb possessed stronger impact resistance and better load-bearing capacity than the hexagonal honeycomb under impact in this study. The equivalent method could be applied to select the optimum honeycomb based on requirements and improve the efficiency of the double V-wing honeycomb.


Author(s):  
A. Ajdari ◽  
P. K. Canavan ◽  
H. Nayeb-Hashemi ◽  
G. Warner

Three-dimensional structure of trabecular bone can be modeled by 2D or 3D Voronoi structure. The effect of missing cell walls on the mechanical properties of 2D honeycombs is a first step towards understanding the effect of local bone resorption due to osteoporosis. In patients with osteoporosis, bone mass is lost first by thinning and then by resorption of the trabeculae [1]. Furthermore, creep response is important to analyze in cellular solids when the temperature is high relative to the melting temperature. For trabecular bone, as body temperature (38 °C) is close to the denaturation temperature of collagen (52 °C), trabecular bone creeps [1]. Over the half of the osteoporotic vertebral fractures that occur in the elderly, are the result of the creep and fatigue loading associated with the activities of daily living [2]. The objective of this work is to understand the effect of missing walls and filled cells on elastic-plastic behavior of both regular hexagonal and non-periodic Voronoi structures using finite element analysis. The results show that the missing walls have a significant effect on overall elastic properties of the cellular structure. For both regular hexagonal and Voronoi materials, the yield strength of the structure decreased by more than 60% by introducing 10% missing walls. In contrast, the results indicate that filled cells have much less effect on the mechanical properties of both regular hexagonal and Voronoi materials.


Sign in / Sign up

Export Citation Format

Share Document