Heat and mass transfer on a stretching/shrinking and porous sheet of variable thickness with suction and injection

Author(s):  
Aftab Alam ◽  
Dil Nawaz Khan Marwat

Heat and mass transfer in a viscous flow over a non-uniform porous plate of variable thickness is investigated in this paper. The variably heated plate is stretched/shrunk in a stagnant fluid with variable velocity and has the non-uniform species concentration. The governing partial differential equations are simplified and solved numerically. The transport of heat and mass in the flow regime is governed by a set of PDE’s satisfying certain necessary boundary conditions. The governing PDE’s are simplified by using boundary layer approximations and transformed into a set of ODE’s by invoking a set of new transformations. The system of ODE’s contains several dimensionless numbers (parameters) which demonstrates the behavior of all field quantities. All the unknown variables, rates of heat and mass transfer are evaluated and effects of the existing parameters are seen on them, whereas, they are significantly changed with the variation of these dimensionless quantities. New solutions and results are presented in graphs and tables, whereas, they are thoroughly examined and discussed. In addition to that the modeled problem and its solutions are exactly matched with the classical problems and their corresponding solutions for specific numerical values of the governing parameters involved in the current modeled problem. The engineering applications of heat and mass transfer problems are very famous in many industrial processes. Therefore, these two phenomena are widely discussed and analyzed, whereas, they are frequently utilized for the formation of metallic devices/objects while using additive manufacturing processes, cryogenics, formation of reasonable and suitable heat exchangers, falling film evaporation and the steam boilers. However, most of the engineering systems with or without magnetized and electrically conducting surfaces cannot be expressed in usual coordinates i.e. cartesian coordinate system, moreover, most of the engineering processes involve fluids of different nature and kinds, whereas, sometime they also require different physical and environmental conditions. Therefore, in such situations we need, to upgrade and modify the present modeled problem according to prevailing situations.

2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110129
Author(s):  
Aftab Alam ◽  
Dil Nawaz Khan Marwat ◽  
Azhar Ali

Nano-fluid flow is maintained over a non-uniform porous plate of variable thickness with non-uniform stretching (shrinking) velocity. In real engineering systems, the conduction resistance of sheets is necessarily important, whereas, in typical analysis very thin walls are undertaken. The surface thickness is ignored in the classical studies of flow, heat, and mass transfer problems. However, it the compulsory component in many physical problems, therefore, we thoroughly examined the perceptiveness of the wall thickness on the field variables and the transport of heat and nano-particle between solid surfaces and fluids. The phenomenon of variable wall thickness is extensively investigated with the combination of other boundary inputs. The variable stretching and shrinking velocities of the plate may have linear and non-linear forms and the sheet is uniformly heated whereas the nanoparticles are uniformly distributed over its surface. The diffusion of heat and nanoparticles in the fluid are governed using the boundary layer PDE’s, which satisfy certain BC’s. A set of unseen transformations is generated for solving the system of boundary value PDE’s. In view of these new variables, we obtained a system of boundary value ODE’s and it contains several dimensionless numbers (parameters). It is worthy noticeable that the problem describes and enhances the behavior of all field quantities in view of the governing parameters. All the field quantities, rates of heat and mass transfer are evaluated and effects all the parameters are seen on them and they are significantly changed with the variation of these dimensionless quantities. New results are presented in different graphs and tables and thoroughly examined. The Thermophoresis force enhances both the temperature and concentration profiles, however, the concentration distribution of nanoparticles is abruptly changed with a small variation in this force. The concentration profiles are bell-shaped on the right and behaves like a normal distribution. On the other hand, the addition of more nanoparticles into the base fluids increased (decreased) the temperature (concentration) profiles. Moreover, the two different attitudes of wall thickness are also examined on filed variables. The significant features and diversity of modeled equations are scrutinized and we recovered the previous problems of mass and heat transfer in Nano-fluid from a uniformly heated sheet of variable (uniform) thickness with variable (uniform) stretching/shrinking and injection/suction velocities. Moreover, two different numerical solutions of the modeled equations are found. These solutions are compared in a table and exactly matched with each other.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
R. Nandkeolyar ◽  
M. Das ◽  
P. Sibanda

Unsteady hydromagnetic free convective flow of a viscous, incompressible, electrically conducting, and heat radiating fluid past a flat plate with ramped wall temperature and suction/blowing is studied. The governing equations are first subjected to Laplace transformation and then inverted numerically usingINVLAProutine of Matlab. The numerical solutions of the fluid properties are presented graphically while the skin friction and heat and mass transfer coefficients are presented in tabular form. The results are verified by a careful comparison with results in the literature for certain parameter values.


2019 ◽  
Vol 7 (1) ◽  
pp. 69-77
Author(s):  
Sujan Sinha ◽  
◽  
Maushumi Mahanta ◽  

A parametric study to investigate the effect of thermal diffusion (Soret effect) on an MHD mixed convective heat and mass transfer flow of an incompressible viscous electrically conducting fluid past a vertical porous plate. The magnetic reynolds number is assumed to be small that the induced magnetic field can be neglected as compared with the applied magnetic field. Sherwood number at the plate are demonstrated graphically for various values of the parameters involved in the problem


Author(s):  
J. Buggaramulu ◽  
M. Venkatakrishna ◽  
Y. Harikrishna

The objective of this paper is to analyze an unsteady MHD free convective heat and mass transfer boundary flow past a semi-infinite vertical porous plate immersed in a porous medium with radiation and chemical reaction. The governing equations of the flow field are solved numerical a two term perturbation method. The effects of the various parameters on the velocity, temperature and concentration profiles are presented graphically and values of skin-frication coefficient, Nusselt number and Sherwood number for various values of physical parameters are presented through tables.


2014 ◽  
Vol 541-542 ◽  
pp. 722-726
Author(s):  
Jun Ming Hou ◽  
De Xu Yang ◽  
Ke Jia Wu

In this paper the drying process of ginkgo biloba is discussed. The process combined effect of convective Heat and mass transfer on hydromagnetic electrically conducting viscous, how to improve the ability of drying is an important problem. The heat transmission for drying process is discussed. The parameter of drying process is determined. The ginkgo biloba drying machine is developed and the key part of drying machine is designed. The whole drying machine is developed, which can enhance the ability of medical industry. The study can help the Optimization of drying process and the level of the ginkgo biloba drying.


2019 ◽  
Vol 8 (4) ◽  
pp. 1966-1970

A parametric study to investigate the effect of chemical reaction parameter on an MHD mixed convective mass transfer flow of an incompressible viscous electrically conducting fluid past an infinite vertical porous plate. The equations of motion are work out by assuming Laplace Transform approach. The velocity profile, temperature, concentration, viscous drag, Nusselt number and the rate of mass transfer are discussed graphically by assuming some arbitrary criterion given in the present paper and physical descriptions are made. It is emphasized from the graphical portion that chemical species retards the fluid flow


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Odelu Ojjela ◽  
N. Naresh Kumar

This paper presents an incompressible two-dimensional heat and mass transfer of an electrically conducting micropolar fluid flow in a porous medium between two parallel plates with chemical reaction, Hall and ion slip effects. Let there be periodic injection or suction at the lower and upper plates and the nonuniform temperature and concentration at the plates are varying periodically with time. The flow field equations are reduced to nonlinear ordinary differential equations using similarity transformations and then solved numerically by quasilinearization technique. The profiles of velocity components, microrotation, temperature distribution and concentration are studied for different values of fluid and geometric parameters such as Hartmann number, Hall and ion slip parameters, inverse Darcy parameter, Prandtl number, Schmidt number, and chemical reaction rate and shown in the form of graphs.


Sign in / Sign up

Export Citation Format

Share Document