Numerical study on mean flow field of turbulent dual offset jet

Author(s):  
Tanmoy Mondal ◽  
Shantanu Pramanik

A numerical investigation on the mean flow and turbulence characteristics of dual offset jet for various separation distances between the two jets with a fixed offset height of the lower jet from the bottom wall is reported in this study. The numerical simulations have been performed by solving the Reynolds-averaged Navier-Stokes equations (RANS) with two-equation standard [Formula: see text] turbulence model. The Reynolds number based on the jet width and the inlet turbulence intensity are considered as 15,000 and 5%, respectively. The computational results for the mean flow reveal that after issuing from the nozzles, the adjacent shear layers of the offset jets meet together at the merging point and then the merged jets reattaches on the bottom wall at the reattachment point before they combine together at the combined point forming a single jet flow. In the far downstream, the flow field behaves like a classical single wall jet flow. The self-similarity of mean flow field is achieved at far down stream of combined point. An increase in separation distance between the two jets [Formula: see text] results in a decrease in magnitude of the streamwise maximum velocity of the combined jet but with same rate of decay. The converging region of the jets has depicted considerable growth of turbulence as the jet centrelines bend towards the merging point. According to the mean flow results, the distances of the reattachment point and the combined point from the nozzle exit gradually increase with the progressive increase in separation distance between the two jets within the range d/ w = 3–8.

2016 ◽  
Vol 138 (7) ◽  
Author(s):  
Tanmoy Mondal ◽  
Manab Kumar Das ◽  
Abhijit Guha

In the present paper, a dual jet consisting of a wall jet and an offset jet has been numerically simulated using two-dimensional unsteady Reynolds-Averaged Navier–Stokes (RANS) equations to examine the effects of jet width (w) variation on the near flow field region. The Reynolds number based on the separation distance between the two jets (d) has been considered to be Re = 10,000. According to the computational results, three distinct flow regimes have been identified as a function of w/d. For w/d ≤ 0.5, the flow field remains to be always steady with two counter-rotating stable vortices in between the two jets. On the contrary, within the range of 0.6 ≤ w/d < 1.6, the flow field reveals a periodic vortex shedding phenomenon similar to what would be observed in the wake of a two-dimensional bluff body. In this flow regime, the Strouhal number of vortex shedding frequency decreases monotonically with the progressive increase in the jet width. For w/d ≥ 1.6, the periodic vortex shedding is still evident, but the Strouhal number becomes insensitive to the variation of jet width.


Author(s):  
Alexander Vakhrushev ◽  
Abdellah Kharicha ◽  
Ebrahim Karimi-Sibaki ◽  
Menghuai Wu ◽  
Andreas Ludwig ◽  
...  

AbstractA numerical study is presented that deals with the flow in the mold of a continuous slab caster under the influence of a DC magnetic field (electromagnetic brakes (EMBrs)). The arrangement and geometry investigated here is based on a series of previous experimental studies carried out at the mini-LIMMCAST facility at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). The magnetic field models a ruler-type EMBr and is installed in the region of the ports of the submerged entry nozzle (SEN). The current article considers magnet field strengths up to 441 mT, corresponding to a Hartmann number of about 600, and takes the electrical conductivity of the solidified shell into account. The numerical model of the turbulent flow under the applied magnetic field is implemented using the open-source CFD package OpenFOAM®. Our numerical results reveal that a growing magnitude of the applied magnetic field may cause a reversal of the flow direction at the meniscus surface, which is related the formation of a “multiroll” flow pattern in the mold. This phenomenon can be explained as a classical magnetohydrodynamics (MHD) effect: (1) the closure of the induced electric current results not primarily in a braking Lorentz force inside the jet but in an acceleration in regions of previously weak velocities, which initiates the formation of an opposite vortex (OV) close to the mean jet; (2) this vortex develops in size at the expense of the main vortex until it reaches the meniscus surface, where it becomes clearly visible. We also show that an acceleration of the meniscus flow must be expected when the applied magnetic field is smaller than a critical value. This acceleration is due to the transfer of kinetic energy from smaller turbulent structures into the mean flow. A further increase in the EMBr intensity leads to the expected damping of the mean flow and, consequently, to a reduction in the size of the upper roll. These investigations show that the Lorentz force cannot be reduced to a simple damping effect; depending on the field strength, its action is found to be topologically complex.


2011 ◽  
Vol 689 ◽  
pp. 97-128 ◽  
Author(s):  
K. Gudmundsson ◽  
Tim Colonius

AbstractPrevious work has shown that aspects of the evolution of large-scale structures, particularly in forced and transitional mixing layers and jets, can be described by linear and nonlinear stability theories. However, questions persist as to the choice of the basic (steady) flow field to perturb, and the extent to which disturbances in natural (unforced), initially turbulent jets may be modelled with the theory. For unforced jets, identification is made difficult by the lack of a phase reference that would permit a portion of the signal associated with the instability wave to be isolated from other, uncorrelated fluctuations. In this paper, we investigate the extent to which pressure and velocity fluctuations in subsonic, turbulent round jets can be described aslinearperturbations to the mean flow field. The disturbances are expanded about the experimentally measured jet mean flow field, and evolved using linear parabolized stability equations (PSE) that account, in an approximate way, for the weakly non-parallel jet mean flow field. We utilize data from an extensive microphone array that measures pressure fluctuations just outside the jet shear layer to show that, up to an unknown initial disturbance spectrum, the phase, wavelength, and amplitude envelope of convecting wavepackets agree well with PSE solutions at frequencies and azimuthal wavenumbers that can be accurately measured with the array. We next apply the proper orthogonal decomposition to near-field velocity fluctuations measured with particle image velocimetry, and show that the structure of the most energetic modes is also similar to eigenfunctions from the linear theory. Importantly, the amplitudes of the modes inferred from the velocity fluctuations are in reasonable agreement with those identified from the microphone array. The results therefore suggest that, to predict, with reasonable accuracy, the evolution of the largest-scale structures that comprise the most energetic portion of the turbulent spectrum of natural jets, nonlinear effects need only be indirectly accounted for by considering perturbations to the mean turbulent flow field, while neglecting any non-zero frequency disturbance interactions.


2001 ◽  
Vol 124 (1) ◽  
pp. 154-165 ◽  
Author(s):  
S. R. Maddah ◽  
H. H. Bruun

This paper presents results obtained from a combined experimental and computational study of the flow field over a multi-element aerofoil with and without an advanced slat. Detailed measurements of the mean flow and turbulent quantities over a multi-element aerofoil model in a wind tunnel have been carried out using stationary and flying hot-wire (FHW) probes. The model configuration which spans the test section 600mm×600mm, is made of three parts: 1) an advanced (heel-less) slat, 2) a NACA 4412 main aerofoil and 3) a NACA 4415 flap. The chord lengths of the elements were 38, 250 and 83 mm, respectively. The results were obtained at a chord Reynolds number of 3×105 and a free Mach number of less than 0.1. The variations in the flow field are explained with reference to three distinct flow field regimes: attached flow, intermittent separated flow, and separated flow. Initial comparative results are presented for the single main aerofoil and the main aerofoil with a nondeflected flap at angles of attacks of 5, 10, and 15 deg. This is followed by the results for the three-element aerofoil with emphasis on the slat performance at angles of attack α=10, 15, 20, and 25 deg. Results are discussed both for a nondeflected flap δf=0deg and a deflected flap δf=25deg. The measurements presented are combined with other related aerofoil measurements to explain the main interaction of the slat/main aerofoil and main aerofoil/flap both for nondeflected and deflected flap conditions. These results are linked to numerically calculated variations in lift and drag coefficients with angle of attack and flap deflection angle.


Author(s):  
Ruquan You ◽  
Haiwang Li ◽  
Zhi Tao ◽  
Kuan Wei

The mean flow field in a smooth rotating channel was measured by particle image velocimetry under the effect of buoyancy force. In the experiments, the Reynolds number, based on the channel hydraulic diameter (D) and the bulk mean velocity (Um), is 10000, and the rotation numbers are 0, 0.13, 0.26, 0.39, 0.52, respectively. The four channel walls are heated with Indium Tin Oxide (ITO) heater glass, making the density ratio (d.r.) about 0.1 and the maximum value of buoyancy number up to 0.27. The mean flow field was simulated on a 3D reconstruction at the position of 3.5<X/D<6.5, where X is along the mean flow direction. The effect of Coriolis force and buoyancy force on the mean flow was taken into consideration in the current work. The results show that the Coriolis force pushes the mean flow to the trailing side, making the asymmetry of the mean flow with that in the static conditions. On the leading surface, due to the effect of buoyancy force, the mean flow field changes considerably. Comparing with the case without buoyancy force, separated flow was captured by PIV on the leading side in the case with buoyancy force. More details of the flow field will be presented in this work.


Author(s):  
Alessio Firrito ◽  
Yannick Bousquet ◽  
Nicolas Binder ◽  
Ludovic Pintat

Abstract In recent years, lot of turbine research is focused on the study and optimization of inter-turbine ducts, an aero-engine component for which the design is becoming more challenging due to the turbofan architecture evolution. Starting from the early design phase, the knowledge of the component performance and outlet flow pattern is crucial in the design of the low pressure turbine. To improve prediction, multi-row unsteady simulations are deployed. Unfortunately, some questions arise in the use of these simulations, among others the knowledge of the turbulent boundary conditions and the contribution of the unsteady simulations to the flow solution. In this paper steady and time resolved RANS simulations of a turning inter-turbine duct are investigated. Particularly, two questions are addressed. The first one is the influence of the turbulent quantities boundary conditions in the case of a k–ω Wilcox turbulence model in the flow field solution. The second one is the contribution of the unsteadiness to the mean flow prediction. It will be shown that the mean flow depends on inlet turbulence only if the turbulence length scale is relatively high; otherwise the flow field is almost turbulence-invariant. For the unsteady simulations, unsteadiness modifies the mean flow solution only with low inlet turbulence.


Water ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 59 ◽  
Author(s):  
Xin Li ◽  
Maolin Zhou ◽  
Jianmin Zhang ◽  
Weilin Xu

The present study examines the configuration of an offset jet issuing into a narrow and deep pool. The standard k-ε model with volume-of-fluid (VOF) method was used to simulate the offset jet for three exit offset ratios (OR = 1, 2 and 3), three expansion ratios (ER = 3, 4 and 4.8), and different jet exits (circular and rectangular). The results clearly show significant effects of the circumference of jet exits (Lexit) in the early region of flow development, and a fitted formula is presented to estimate the length of the potential core zone (LPC). Analysis of the flow field for OR = 1 showed that the decay of cross-sectional streamwise maximum mean velocity (Um) in the transition zone could be fitted by power law with the decay rate n decreased from 1.768 to 1.197 as the ER increased, while the decay of Um for OR = 2 or 3 was observed accurately estimated by linear fit. Analysis of the flow field of circular offset jet showed that Um for OR = 2 decayed fastest due to the fact that the main flow could be spread evenly in floor-normal direction. For circular jets, the offset ratio and expansion ratio do not affect the spread of streamwise velocity in the early region of flow development. It was also observed that the absence of sudden expansion of offset jet is analogous to that of a plane offset jet, and the flow pattern is different.


2006 ◽  
Vol 24 (12) ◽  
pp. 3241-3256 ◽  
Author(s):  
C. M. Huang ◽  
S. D. Zhang ◽  
F. Yi

Abstract. To quantitatively study the effects of nonlinear interactions on tide structure, a nonlinear numerical tidal model is developed, and the reliability and convergence of the adopted algorithm and coding are checked by numerical experiments. Under the same conditions as those employed by the GSWM-00 (Global Scale Wave Model 2000), our model provides the nonlinear quasi-steady solution of the migrating semidiurnal tide, which differs from the GSWM-00 result (the linear steady solution) in the MLT region, especially above 100 km. Additionally, their amplitude difference displays a remarkable month-to-month variation, and its significant magnitudes occur during the month with strong semidiurnal tide. A quantitative analysis suggests that the main cause for the amplitude difference is that the initial migrating 12-h tide will interact with the mean flow as well as the nonlinearity-excited 6-h tide, and subsequently yield a new 12-h tidal part. Furthermore, our simulations also show that the mean flow/tidal interaction will significantly alter the background wind and temperature fields. The large magnitudes of the tidal amplitude difference and the background alteration indicate that the nonlinear processes involved in tidal propagations should be comprehensively considered in the description of global atmospheric dynamics in the MLT region. The comparisons among our simulations, the GSWMs and some observations of tides suggest that the nonlinearity-induced tidal structure variation could be a possible mechanism to account for some discrepancies between the GSWMs and the observations.


Author(s):  
Ali Assoudi ◽  
Sabra Habli ◽  
Nejla Mahjoub Saïd ◽  
Philippe Bournot ◽  
Georges Le Palec
Keyword(s):  
Jet Flow ◽  

Sign in / Sign up

Export Citation Format

Share Document