scholarly journals Modeling and dynamic analysis of spiral bevel gear coupled system of intermediate and tail gearboxes in a helicopter

Author(s):  
Haimin Zhu ◽  
Weifang Chen ◽  
Rupeng Zhu ◽  
Li Zhang ◽  
Bibo Fu ◽  
...  

The coupled dynamic model of the intermediate and tail gearboxes’ spiral bevel gear-oblique tail shaft-laminated membrane coupling was established by employing the hybrid modeling method of finite element and lumped mass. Among them, the dynamic equation of the shaft was constructed by Timoshenko beam; spiral bevel gears were derived theoretically by the lumped-mass method, where the effects of time-varying meshing stiffness, transmission error, external imbalance excitation and the like were considered simultaneously; laminated membrane coupling was simplified to a lumped parameter model, in which the stiffness was obtained by the finite element simulation and experiment. On this basis, the laminated membrane coupling and effects of several important parameters, including the unbalance value, tail rotor excitation, oblique tail shaft’s length and transmission error amplitude, on the system’s dynamic characteristics were discussed. The results showed that the influences of laminated membrane coupling and transmission error amplitude on the coupled system’s vibration response were prominent, which should be taken into consideration in the dynamic model. Due to the bending-torsional coupled effect, the lateral vibration caused by gear eccentricity would enlarge the oblique tail shaft’s torsional vibration; similarly, the tail rotor’s torsional excitation also varies the lateral vibration of the oblique tail shaft. The coupled effect between the eccentricity of gear pairs mainly hit the torsional vibration. Also, as the oblique tail shaft’s length increased, the torsional vibration of the oblique tail shaft tended to diminish while the axis orbit became larger. The research provides theoretical support for the design of the helicopter tail transmission system.

Author(s):  
Xiangying Hou ◽  
Yuzhe Zhang ◽  
Hong Zhang ◽  
Jian Zhang ◽  
Zhengminqing Li ◽  
...  

The vector form intrinsic finite element (VFIFE) method is springing up as a new numerical method in strong non-linear structural analysis for its good convergence, but has been constricted in static or transient analysis. To overwhelm its disadvantages, a new damping model was proposed: the value of damping force is proportional to relative velocity instead of absolute velocity, which could avoid inaccuracy in high-speed dynamic analysis. The accuracy and efficiency of the proposed method proved under low speed; dynamic characteristics and vibration rules have been verified under high speed. Simulation results showed that the modified VFIFE method could obtain numerical solutions with good efficiency and accuracy. Based on this modified method, high-speed vibration rules of spiral bevel gear pair under different loads have been concluded. The proposed method also provides a new way to solve high-speed rotor system dynamic problems.


Author(s):  
Yanming Mu ◽  
Zongde Fang

This paper presents a new method to design a seventh-order transmission error for high contact ratio spiral bevel gears by the modified curvature motion method to reach the purpose of reducing or eliminating gear vibration and noise. In this paper, firstly, based on the predesigned seventh-order transmission error, the polynomial coefficients of transmission error curve can be obtained. Secondly, a method named modified curvature motion method is used to generate the spiral bevel gear with the predesigned transmission error. Lastly, based on TCA and LTCA, we verify the feasibility of the modified curvature motion method to generate spiral bevel gear with seventh-order transmission error, and the meshing impact of gear set with the seventh-order and second-order function of transmission error is analyzed and compared. The results of a numerical example show that the seventh-order transmission error acquired by the modified curvature motion method can effectively reduce the meshing impact of spiral bevel gears. The tooth modification method and meshing impact analysis method can serve as a basis for developing a general technique of flank modification for spiral bevel gears.


2021 ◽  
Vol 13 (8) ◽  
pp. 168781402110371
Author(s):  
Yuan Chen ◽  
Xudong Mou

Spiral bevel gear is widely used in various mechanical transmission systems, such as tractor transmission system. Because it is mainly used in the heavy-load conditions, it would most likely resonate within the rated speed, resulting in tooth fatigue damage. In this paper, based on the principle of meshing and gear tooth machining, the spherically involute tooth profile equation of spiral bevel gear is deduced and the precise modeling method based on the CATIA is studied. The natural frequency and modal shape under free vibration are obtained by the finite element method (FEM), the influence of web thickness and web hole on the natural frequency of driven gear plate is analyzed as well. In addition, the experimental modal of bevel gear pair is carried out based on a multiple-reference impact test, Modal Assurance Criterion (MAC) is calculated, the three-dimensional modeling accuracy and the finite element analysis reliability are verified. The results show that the error between the measured frequency of bevel gear pair and the calculated frequency of the finite element simulation are both within 5%, and the MAC is above 0.8. The fourth-order natural frequency is the most sensitive to the web thickness, the second-order natural frequency is the most sensitive to the web hole.


2011 ◽  
Vol 86 ◽  
pp. 428-433
Author(s):  
Ping Jiang ◽  
Guang Lei Liu ◽  
Rui Ting Zhang ◽  
Chong Qing Wang

In order to precisely control the meshing performance of spiral bevel gear pair, this paper represents a quantitative evaluation method using transmission error curve and tooth face contact trace. The design, using local synthesis method, obtains the manufacturing parameters of gear pair and forms the tooth face of spiral bevel gear. This paper accomplishes the quantitative evaluation by the following methods: using tooth contact analysis (TCA) to obtain actual transmission error curve and tooth face contact trace; quantitatively evaluating the transmission error curve by comparing the web values of actual and preset theoretical transmission error curves; quantitatively evaluating the tooth face contact trace by comparing the requirements (such as in shape, size and position) defined for spiral bevel gear tooth face contact trace and the corresponding parameters of an externally-connected rectangle, which surrounds the tooth face contact trace and is used to describe tooth face contact trace. This paper conducts a meshing performance analysis and quantitative evaluation of an aero spiral bevel gear pair. The result shows that, the actual and preset theoretical transmission error curves are basically in coincidence and the tooth face contact trace meets the requirements. This quantitative evaluation method lays a foundation for analyzing the relationship between transmission error curve and tooth face contact trace and for analyzing the installation error sensitivity.


2013 ◽  
Vol 365-366 ◽  
pp. 281-284
Author(s):  
Li Juan Yu ◽  
Xu Peng Li ◽  
Fu You Liu ◽  
Fei Zheng

The tool feed system main drive shaft of CNC spiral bevel gear milling machine is researched, and the vibration form of the drive shaft is confirmed.The main drive shaft is simplified using the lumped parameter method, the lumped mass model and the force model were been obtained. When bending vibrating, the natural frequency of the main drive shaft is calculated using the transfer matrix method. In order to verify the correctness of the calculations, the vibration of the main drive shaft is simulated by using ANSYS. This paper also designs the vibration control system for the main drive shaft, and analyzes influence factors which affects the vibration of the main drive shaft.


2015 ◽  
Vol 9 (1) ◽  
pp. 637-645 ◽  
Author(s):  
Xiang Tieming ◽  
Zhou Shuiting ◽  
Yi Liao

In order to obtain the spiral bevel gear wheel natural frequencies and mode shapes in the unconstrained state for the purpose of dynamic characteristics study, the spiral bevel gear wheel three-dimensional solid model of a mini-bus main reducer is established in this paper. The finite element model of spiral bevel gear wheel which consists of 32351 nodes, 18436 solid187 tetrahedrons finite element method elements is established by using free grid meshing method in this paper. Extract the first 6 orders modals parameters such as natural frequencies and main vibration mode shapes by using the Lanczos method. The new 1st to 4th orders modals are formed by comparing and merging 2 orders repeated modals. In order to verify the effectiveness of the finite element analysis results, the experiment modal test based on the impulse force hammer percussion transient single-point excitation and multi-point response analysis method has been done. The maximum difference value of natural frequency between experimental modal test result and finite element modal analysis results is 29.86 Hz, the maximum error rate is 0.41%, which confirmed the result of finite element method is effective and reliable. The conclusions reflect the vibration response characteristics of spiral bevel gear wheel, and provide theoretical basis for dynamic response, structure design and optimization of spiral bevel gear wheel.


Sign in / Sign up

Export Citation Format

Share Document