A ‘smart tire’ for estimating the tire force and the extents of the influences of specific factors

Author(s):  
Xiaolong Zhu ◽  
Dang Lu

This paper describes an intelligent device for detection of the mechanical characteristics of a tire and its test method. When deformation of the operating tire occurs, by tracking the displacements of fluorescent marker points with a camera, a neural network algorithm is applied to obtain the tire forces. The FTire model is used to fit the experimental curves obtained by measuring the mechanical properties in order to compare whether the test data agree with the actual motion law of the tire. The proposed system bypasses the use of a tire-testing machine and a six-component sensor to measure the force and the torque, and it can achieve real-time measurement and computation without isolating the tire and the vehicle. The proposed method is simple, possesses a compact structure, is easy to operate, and has low costs.

2017 ◽  
Vol 45 (3) ◽  
pp. 175-199 ◽  
Author(s):  
Mattias Hjort ◽  
Olle Eriksson ◽  
Fredrik Bruzelius

ABSTRACT This work presents a comprehensive study of the performance of winter tires on snow, ice, and asphalt. A set of 77 different winter tires were carefully selected for the study. Of these, 27 were new and 50 were worn from real traffic use. All three tire types for winter conditions (Nordic, European, and studded) were represented. All tires have been tested using a mobile tire-testing device for snow and asphalt and using a stationary tire-testing facility for ice. Both devices recorded the tire forces and motions, enabling a close to complete stationary characterization of the tires. In addition, 42 of the tires were tested on a passenger car, where brake performance was evaluated for the three different road conditions. This enables a comparative study of performance between tire types and wear for various winter road conditions. The results suggest that the recorded data represent real vehicle performance. Some conclusions from the measurements are that the effect of wear is consistent between the tire groups and that the performance degradation is most noticeable on studded tires on ice and on European tires on snow.


2004 ◽  
Vol 126 (4) ◽  
pp. 753-763 ◽  
Author(s):  
Ossama Mokhiamar ◽  
Masato Abe

This paper presents a proposed optimum tire force distribution method in order to optimize tire usage and find out how the tires should share longitudinal and lateral forces to achieve a target vehicle response under the assumption that all four wheels can be independently steered, driven, and braked. The inputs to the optimization process are the driver’s commands (steering wheel angle, accelerator pedal pressure, and foot brake pressure), while the outputs are lateral and longitudinal forces on all four wheels. Lateral and longitudinal tire forces cannot be chosen arbitrarily, they have to satisfy certain specified equality constraints. The equality constraints are related to the required total longitudinal force, total lateral force, and total yaw moment. The total lateral force and total moment required are introduced using the model responses of side-slip angle and yaw rate while the total longitudinal force is computed according to driver’s command (traction or braking). A computer simulation of a closed-loop driver-vehicle system subjected to evasive lane change with braking is used to prove the significant effects of the proposed optimal tire force distribution method on improving the limit handling performance. The robustness of the vehicle motion with the proposed control against the coefficient of friction variation as well as the effect of steering wheel angle amplitude is discussed.


Author(s):  
Jianyong Zuo ◽  
Guo Hu ◽  
Tiefeng Zhao ◽  
Lei Zuo

To study the temperature rise of the metro wheel tread, the simulation is conducted, finding that the highest temperature emerges in the tread area during the braking process, up to 350 °C. The range of temperature measurement should include 0∼350 °C. The temperature rise of the tread surface and the temperature near the side of the wheel tread tend to be consistent after the braking. The temperature measurement on the side of the wheel can provide a reference for the tread temperature measurement. Then several kinds of temperature sensors used for testing the tread temp are introduced, the accuracy and influencing factors of the measurement of the tread surface temperature sensor was analyzed. For the temperature measurement of wheel tread, featuring bright surface emission, low and unstable emissivity, a real-time temperature test method with multi-sensor compensation and data fusion is proposed and a more realistic curve of the tread temperature is obtained. Taking the actual line pure-air brake condition as an example, the above method is used to measure the temperature of tread surface. The results show that the measurement accuracy of multi-sensor data compensation and fusion is better than that of using the single infrared thermometer method, up by 15%; The law of temperature rise is consistent with that of transient simulation. reflecting that this testing method can offer important references to the real-time measurement of tread temperature.


Author(s):  
Vladimir V. Vantsevich ◽  
Lyubomyr I. Demkiv ◽  
Sviatoslav R. Klos ◽  
Samuel R. Misko ◽  
Lee Moradi

Abstract Existing literature on vehicle traction dynamics were reviewed for a variety of vehicle and tire dynamic models, some of which consider the pneumatic tires’ relaxation as a property of vehicle transient dynamics. In general, unlike the lateral relaxation counterpart, the longitudinal tire relaxation characteristics were mostly overlooked in tire transient dynamics modeling. As a continuation of the analytical study published in the 2018 DSCC Proceedings, the co-authors of this paper present an experimental study of the longitudinal tire relaxation characteristics of a Continental MPT 81 tire. Experimental results were obtained by conducting tests on an MTS Flat-Trac LTR tire testing machine. The experimental data is analyzed to investigate longitudinal tire relaxation characteristics as they relate to changes of tire conditions. The goal is to verify and refine the existing models suggested in the literature; as well as, discuss advantages and disadvantages of different test procedures and tire testing equipment. In particular, the paper investigates the longitudinal tire relaxation constant variation due to changes of wheel velocity, tire inflation pressure, and sine oscillations of tire slippage in the time and frequency domains. The paper concludes on the influence of the longitudinal tire relaxation constants on the tire/vehicle traction dynamics modeling.


2018 ◽  
Vol 30 (1) ◽  
pp. 138-144 ◽  
Author(s):  
Yuuki Shiozawa ◽  
◽  
Hiroshi Mouri

To control vehicle behavior, it is essential to estimate tire force accurately at all times. However, it is currently difficult to detect tire performance degradation before the deterioration of vehicle dynamics in real time because tire force estimation is usually conducted by comparing the observed vehicle motion with the onboard vehicle-model motion baseline reference. Such conventional estimators do not perform well if there is a significant difference between the vehicle and the model behavior. The lack of technology to easily predict tire forces and road surface friction is concerning. In this paper, a new tire state estimation method based on tire force characteristics is proposed.


Author(s):  
Taichi Shiiba ◽  
Koichiro Yamato ◽  
Kensuke Kobayashi ◽  
Tsuyoshi Okada ◽  
Keisuke Morita

An accurate description of the tire characteristics is very important for vehicle dynamic analysis. However, the characteristics of a tire are very complex, and it is not easy to develop the analytical model of tire force. It is also well known that the actual tire force is greatly affected by the suspension properties. The geometry of suspension arms determines the wheel alignment specifications such as toe and camber angle, and the stiffness and damping characteristics of suspension elements influences the vertical load of each wheel. In order to investigate the suspension properties upon the tire force characteristics, the authors have developed an original tire and suspension testing machine with 6-DOF motion platform. This system is equipped with a tire, a suspension system of a passenger car, a roller conveyer, and a 6-DOF motion platform. The developed system can evaluate the relationship between the suspension system and the tire, whereas the conventional tire testing machine measures the individual characteristics of a tire. In this paper, we report some test results with developed testing system. First, the lateral force characteristics of a tire in steady-state cornering condition were evaluated with this system, and the compliance steer characteristics of a suspension caused by the lateral force were also investigated at the same time. Next, the tire force characteristics were evaluated under the varying load condition. The random vertical displacement generated by the 6-DOF motion platform was applied to the tire, and the vertical and lateral force were observed. It was shown that the developed system can realize the evaluation of tire and suspension characteristics under various conditions.


Sign in / Sign up

Export Citation Format

Share Document