Vacant parking slot detection and tracking during driving and parking with a standalone around view monitor

Author(s):  
Wei Li ◽  
Libo Cao ◽  
Lingbo Yan ◽  
Jiacai Liao ◽  
Zhen Wang

Due to distortion, limitations of vision, and occlusion, most of the existing vacant parking slot detection methods with a standalone around view monitor (AVM) are prone to miss some parking slots and incorrectly identify whether the parking slot is vacant. To overcome this problem, we propose a complete method for vacant parking slot detection and tracking during driving and parking. Considering the different conditions of driving and parking, two different deep convolutional neural networks (DCNNs) are used to detect parking slots, of which the vacant parking slot detection network (VPS-Net) is used to detect vacant parking slots during driving, and the directional marking point detection network (DMPR-PS) is used to detect the directional marking points of the target parking slot during parking. Furthermore, in the driving process, we design a new matching rule and tracking management rule based on the Kernelized Correlation Filter (KCF) to track the parking slots, and fuse classification results of multiple frames to determine the occupancy status. In the parking process, since the parking slot is easily blocked by the vehicle, we design another new tracker to track the directional marking points and infer the complete parking slot using tracking results and prior geometric information. To evaluate the proposed method, a labeled video sequence dataset is established. Experiments show that the proposed method has improved the accuracy and continuity of vacant parking slots detection and positioning whether in the driving process or parking process.

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Qimei Wang ◽  
Feng Qi ◽  
Minghe Sun ◽  
Jianhua Qu ◽  
Jie Xue

This study develops tomato disease detection methods based on deep convolutional neural networks and object detection models. Two different models, Faster R-CNN and Mask R-CNN, are used in these methods, where Faster R-CNN is used to identify the types of tomato diseases and Mask R-CNN is used to detect and segment the locations and shapes of the infected areas. To select the model that best fits the tomato disease detection task, four different deep convolutional neural networks are combined with the two object detection models. Data are collected from the Internet and the dataset is divided into a training set, a validation set, and a test set used in the experiments. The experimental results show that the proposed models can accurately and quickly identify the eleven tomato disease types and segment the locations and shapes of the infected areas.


Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 152 ◽  
Author(s):  
Zhun Fan ◽  
Chong Li ◽  
Ying Chen ◽  
Paola Di Mascio ◽  
Xiaopeng Chen ◽  
...  

Automated pavement crack detection and measurement are important road issues. Agencies have to guarantee the improvement of road safety. Conventional crack detection and measurement algorithms can be extremely time-consuming and low efficiency. Therefore, recently, innovative algorithms have received increased attention from researchers. In this paper, we propose an ensemble of convolutional neural networks (without a pooling layer) based on probability fusion for automated pavement crack detection and measurement. Specifically, an ensemble of convolutional neural networks was employed to identify the structure of small cracks with raw images. Secondly, outputs of the individual convolutional neural network model for the ensemble were averaged to produce the final crack probability value of each pixel, which can obtain a predicted probability map. Finally, the predicted morphological features of the cracks were measured by using the skeleton extraction algorithm. To validate the proposed method, some experiments were performed on two public crack databases (CFD and AigleRN) and the results of the different state-of-the-art methods were compared. To evaluate the efficiency of crack detection methods, three parameters were considered: precision (Pr), recall (Re) and F1 score (F1). For the two public databases of pavement images, the proposed method obtained the highest values of the three evaluation parameters: for the CFD database, Pr = 0.9552, Re = 0.9521 and F1 = 0.9533 (which reach values up to 0.5175 higher than the values obtained on the same database with the other methods), for the AigleRN database, Pr = 0.9302, Re = 0.9166 and F1 = 0.9238 (which reach values up to 0.7313 higher than the values obtained on the same database with the other methods). The experimental results show that the proposed method outperforms the other methods. For crack measurement, the crack length and width can be measure based on different crack types (complex, common, thin, and intersecting cracks.). The results show that the proposed algorithm can be effectively applied for crack measurement.


2005 ◽  
Vol 22 (01) ◽  
pp. 51-70 ◽  
Author(s):  
KYONG JOO OH ◽  
TAE HYUP ROH ◽  
MYUNG SANG MOON

This study suggests time-based clustering models integrating change-point detection and neural networks, and applies them to financial time series forecasting. The basic concept of the proposed models is to obtain intervals divided by change points, to identify them as change-point groups, and to involve them in the forecasting model. The proposed models consist of two stages. The first stage, the clustering neural network modeling stage, is to detect successive change points in the dataset, and to forecast change-point groups with backpropagation neural networks (BPNs). In this stage, three change-point detection methods are applied and compared. They are: (1) the parametric approach, (2) the nonparametric approach, and (3) the model-based approach. The next stage is to forecast the final output with BPNs. Through the application to financial time series forecasting, we compare the proposed models with a neural network model alone and, in addition, determine which of three change-point detection methods performs better. Furthermore, we evaluate whether the proposed models play a role in clustering to reflect the time. Finally, this study examines the predictability of the integrated neural network models based on change-point detection.


Author(s):  
B. Vishnyakov ◽  
I. Sgibnev ◽  
V. Sheverdin ◽  
A. Sorokin ◽  
P. Masalov ◽  
...  

Abstract. In this paper we present the semantic SLAM method based on a bundle of deep convolutional neural networks. It provides real-time dense semantic scene reconstruction for the autonomous driving system of an off-road robotic vehicle. Most state-of-the-art neural networks require large computing resources that go beyond the capabilities of many robotic platforms. We propose an architecture for 3D semantic scene reconstruction on top of the recent progress in computer vision by integrating SuperPoint, SuperGlue, Bi3D, DeepLabV3+, RTM3D and additional module with pre-processing, inference and postprocessing operations performed on GPU. We also updated our simulated dataset for semantic segmentation and added disparity images.


2021 ◽  
Vol 13 (15) ◽  
pp. 2910
Author(s):  
Xiaolong Li ◽  
Hong Zheng ◽  
Chuanzhao Han ◽  
Wentao Zheng ◽  
Hao Chen ◽  
...  

Clouds constitute a major obstacle to the application of optical remote-sensing images as they destroy the continuity of the ground information in the images and reduce their utilization rate. Therefore, cloud detection has become an important preprocessing step for optical remote-sensing image applications. Due to the fact that the features of clouds in current cloud-detection methods are mostly manually interpreted and the information in remote-sensing images is complex, the accuracy and generalization of current cloud-detection methods are unsatisfactory. As cloud detection aims to extract cloud regions from the background, it can be regarded as a semantic segmentation problem. A cloud-detection method based on deep convolutional neural networks (DCNN)—that is, a spatial folding–unfolding remote-sensing network (SFRS-Net)—is introduced in the paper, and the reason for the inaccuracy of DCNN during cloud region segmentation and the concept of space folding/unfolding is presented. The backbone network of the proposed method adopts an encoder–decoder structure, in which the pooling operation in the encoder is replaced by a folding operation, and the upsampling operation in the decoder is replaced by an unfolding operation. As a result, the accuracy of cloud detection is improved, while the generalization is guaranteed. In the experiment, the multispectral data of the GaoFen-1 (GF-1) satellite is collected to form a dataset, and the overall accuracy (OA) of this method reaches 96.98%, which is a satisfactory result. This study aims to develop a method that is suitable for cloud detection and can complement other cloud-detection methods, providing a reference for researchers interested in cloud detection of remote-sensing images.


2020 ◽  
Vol 2020 (10) ◽  
pp. 28-1-28-7 ◽  
Author(s):  
Kazuki Endo ◽  
Masayuki Tanaka ◽  
Masatoshi Okutomi

Classification of degraded images is very important in practice because images are usually degraded by compression, noise, blurring, etc. Nevertheless, most of the research in image classification only focuses on clean images without any degradation. Some papers have already proposed deep convolutional neural networks composed of an image restoration network and a classification network to classify degraded images. This paper proposes an alternative approach in which we use a degraded image and an additional degradation parameter for classification. The proposed classification network has two inputs which are the degraded image and the degradation parameter. The estimation network of degradation parameters is also incorporated if degradation parameters of degraded images are unknown. The experimental results showed that the proposed method outperforms a straightforward approach where the classification network is trained with degraded images only.


Sign in / Sign up

Export Citation Format

Share Document