scholarly journals Analysis of vibration signals to quantify displacement amplitude in the monitoring of vibration-assisted turning

Author(s):  
Balla Srinivasa Prasad ◽  
Javvadi Umamaheswara Rao ◽  
A Gopala Krishna

Vibration-assisted machining combines precision machining with small-amplitude tool vibration at high frequency to improve the fabrication process. It has been applied to a number of processes from turning to drilling to grinding. This work presents the validation of tool condition monitoring system based on vibration parameters. For this purpose, an experimental investigation is planned to acquire vibration signal data during the machining. This work primarily focuses on quantifying the presence of relative vibrations between the cutting tool and a workpiece during vibration-assisted turning process which helps in predicting tool life. For this purpose, an online acoustic optic emission-based vibration transducer, i.e. Laser Doppler Vibrometer, is used as a component of a novel approach. Cutting force and vibration signals were recorded and analyzed. Machine dynamic effects such as cutting force and tool wear are taken into account during the dry machining of Ti-6Al-4V alloys specimens. Identifying the correlation among tool wear, cutting forces and displacement due to vibration is a critical task in the present study. Real-time experimental findings are used to predict the evolution of displacement and tool wear in the experiment. Efficacy of a logical relationship among the process variables such as displacement, feed rate, spindle rotational speed, and depth of cut is critically examined. Results of the present study are used to establish a strategy for real-time efficient tool monitoring systems for vibration-assisted turning operation. The wear mechanisms of DNMA 432 coated carbide and uncoated carbide insert tools were examined at different combinations of feed rate, spindle speed, and depth of cut for turning of Ti-6Al-4V workpiece material.

Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1338
Author(s):  
Lakshmanan Selvam ◽  
Pradeep Kumar Murugesan ◽  
Dhananchezian Mani ◽  
Yuvaraj Natarajan

Over the past decade, the focus of the metal cutting industry has been on the improvement of tool life for achieving higher productivity and better finish. Researchers are attempting to reduce tool failure in several ways such as modified coating characteristics of a cutting tool, conventional coolant, cryogenic coolant, and cryogenic treated insert. In this study, a single layer coating was made on cutting carbide inserts with newly determined thickness. Coating thickness, presence of coating materials, and coated insert hardness were observed. This investigation also dealt with the effect of machining parameters on the cutting force, surface finish, and tool wear when turning Ti-6Al-4V alloy without coating and Physical Vapor Deposition (PVD)-AlCrN coated carbide cutting inserts under cryogenic conditions. The experimental results showed that AlCrN-based coated tools with cryogenic conditions developed reduced tool wear and surface roughness on the machined surface, and cutting force reductions were observed when a comparison was made with the uncoated carbide insert. The best optimal parameters of a cutting speed (Vc) of 215 m/min, feed rate (f) of 0.102 mm/rev, and depth of cut (doc) of 0.5 mm are recommended for turning titanium alloy using the multi-response TOPSIS technique.


Fractals ◽  
2020 ◽  
Vol 28 (01) ◽  
pp. 2050018 ◽  
Author(s):  
CHAI LIP KIEW ◽  
AKSHAYEN BRAHMANANDA ◽  
KH. TAUHID ISLAM ◽  
HAO NAM LEE ◽  
SAMUEL ANTHONY VENIER ◽  
...  

Tool wear is an important issue that happens in all machining operations when the tool exerts forces on the workpiece. Therefore, engineers should choose the optimum values for machining parameters and conditions to reduce the amount of tool wear and increase its life. Machine vibration is one of the factors that highly affects tool wear. Since both tool wear and machine vibration signal have complex structures, in this research we employ fractal theory to find out their relation. In this paper, we analyze the relation between tool wear and machine vibration signal in different experiments where the depth of cut, feed rate and spindle speed change. The obtained results showed that tool wear and machine vibration signal are related to each other in case of variations of depth of cut and feed rate in different experiments, where both fractal structures get more complex by the increment of these machining parameters. The obtained method of analysis in this research can be potentially applied to other machining operations in order to link the machine vibration to the structure of tool wear.


2016 ◽  
Vol 861 ◽  
pp. 26-31 ◽  
Author(s):  
Peng Guo ◽  
Chuan Zhen Huang ◽  
Bin Zou ◽  
Jun Wang ◽  
Han Lian Liu ◽  
...  

The milling of AISI 321 stainless steel which has wide engineering applications particularly in automobile, aerospace and medicine is of great importance especially in the conditions where high surface quality is required. In this paper, L16 orthogonal array design of experiments was adopted to evaluate the machinability of AISI 321 stainless steel with coated cemented carbide tools under finish dry milling conditions, and the influence of cutting speed ( V ), feed rate ( f ) and depth of cut ( ap ) on cutting force, surface roughness and tool wear was analysed. The experimental results revealed that the cutting force decreased with an increase in the cutting speed and increased with an increase in the feed rate or the depth of cut. The tool wear was affected significantly by the cutting speed and the depth of cut, while the effect of the feed rate on the tool wear was insignificant. With the cutting speed increased up to 160 m/min, a decreasing tendency in the surface roughness was observed, but when the cutting speed was further increased, the surface roughness increased. The effect of the feed rate and the depth of cut on the surface roughness was slight.


2015 ◽  
Vol 787 ◽  
pp. 643-647
Author(s):  
M. Vignesh ◽  
K. Venkatesan ◽  
R. Ramanujam ◽  
Sundaravel Vijayan

Metal matrix composites (MMC) are the combination of base metal matrix and reinforcing materials like SiC, Al2O3, etc. The present research is focused on the machinability studies of Al 6061 reinforced with 10% wtof Al2O3 particles using multi layered coated carbide inserts. Fabricated samples by stir casting route were turned by the most variable factors, cutting speed, depth of cutand by a constant feed rate of 0.206 mm/rev. Surface roughness and tool wear are considered asoutput. Experiments are conducted by varying the cutting speed while keeping feed rate and depth of cut as constant. After the optimum cutting speed was determined, the depth of cut is varied by keeping the cutting speedand feed rateas constant.Based on the optimum cutting speed (150 m/min), depth of cut (1.2 mm) and feed rate (0.206 mm/rev), a long run test was carried out to find out the tool life and surface finish. But due to the softness nature built up edge formation is obtained. At the optimal parametric combination, the built up edge obtained is less than 2 mm for a machining time of 425 s


2021 ◽  
Vol 54 (2) ◽  
pp. 325-334
Author(s):  
Sampath Kumar Thepperumal ◽  
Vignesh Margabandu ◽  
Ramanujam Radhakrishnan ◽  
John Rajan Amaladas ◽  
Shri Vignesh Ananthakrishnan

In this present research, the machinability studies of TiAlN/TiCN, TiCN/TiAlN coated and uncoated inserts were investigated on machining custom 450 alloy. The machining input parameters such as feed rate (f), cutting speed (V) and depth of cut (d) are set using orthogonal array. The machining output parameters such as surface roughness, tool wear and cutting forces were studied for its parametric contribution and it was analyzed using Analysis of Variance (ANOVA). Further, the tool wear obtained was studied using scanning electron microscopic images and energy dispersive spectroscopy analysis was conducted to check the addition of work material elements to the coated tool surface. The results show that, the feed rate is the most contributing factor in deciding resultant forces, surface roughness and tool wear respectively. TiAlN/TiCN coated carbide tool has obtained improved machinability, when compared to TiCN/TiAlN coated carbide and uncoated carbide inserts. To obtain one optimal level for all three responses of three types of tools, multi criteria decision making approach, named utility concept approach is selected. Based on the MCDM analysis, it is found that trial number 4 gives better experimental output of improved surface integrity, lower resultant force and less tool wear for all types of tools.


2012 ◽  
Vol 565 ◽  
pp. 454-459 ◽  
Author(s):  
Yun Chen ◽  
Huai Zhong Li ◽  
Jun Wang

Titanium alloys are difficult-to-cut materials. This paper presents an experimental study of the effects of different cutting conditions and tool wear on cutting forces in dry milling Ti6Al4V with coated carbide inserts. The experimental results show that the peak forces increase with the increase in the feed rate and depth of cut. With the cutting speed increment in the range from 50 m/min to 150 m/min the peak forces decrease, while at further higher cutting speeds investigated peak forces increase. The decrease of the peak forces is due to thermal softening of the workpiece material and the increase is because of the strain hardening rate of Ti6Al4V. The tool wear experiment reveals that the major tool wear mechanism is the flank wear. The variations of the peak forces are caused by both the tool wear propagation and the thermal effects.


In various machining processes, the vibration signals are studied for tool condition monitoring often referred as wear monitoring. It is essential to overcome unpredicted machining trouble and to improvise the efficiency of the machine. Tool wear is a vital problem in materials such as nickel based alloys as they have high hardness ranges. Though they have high hardness, a nickel based alloy Inconel 718 with varying HRC (51, 53, and 55), is opted as work material for hard turning process in this work. Uncoated and coated carbide tools are employed as cutting tools. Taguchi’s L9 orthogonal array is considered by taking hardness, speed, feed and depth of cut as four input parameters, the number of experiments and the combinations of parameters for every run is obtained. The vibration signals are recorded at various stages of cutting, till the tool failure is observed. Taking this vibration signal data as input to ANOVA and Grey relation analysis (GRA) which categorizes the optimal and utmost dominant features such as Root Mean Square (RMS), Crest Factor (CF), Skewness (Sk), Kurtosis (Ku), Absolute Deviation (AD), Mean, Standard Deviation (SD), Variance, peak, Frequency and Time in the tool wear process


2012 ◽  
Vol 505 ◽  
pp. 15-19 ◽  
Author(s):  
Mohd Yusof Noordin ◽  
Ali Davoudinejad ◽  
Mohd Rosmaini Shaari

High usage of hardened steel in the automotive, gear, bearing, tool and die making industries, makes it a highly suitable material for industrial production and research. This study was undertaken to investigate the performance of coated ceramic insert with different edge preparations in terms of cutting force and surface roughness. Plain turning experiments were carried out under dry cutting condition at two different cutting speeds and feed rates with a constant depth of cut. The workpiece material is ASSAB DF-3 hardened steel with a 55 ±1 HRC hardness. Results showed that insert edge preparation had a direct influence on the radial and feed forces but not on the tangential force. The use of T-land edge preparation results in the lowest radial and feed forces. In terms of surface finish, the use of honed with finishing wiper insert results in obtaining the lowest surface roughness values. Feed rate had a significant effect on surface roughness whereby by increasing feed rate, the surface roughness value also increased, whereas the effect of cutting speed was found to be insignificant. Increasing cutting speed resulted in lower feed and tangential forces however by increasing feed rate all cutting forces increased.


2017 ◽  
Vol 882 ◽  
pp. 28-35 ◽  
Author(s):  
S.E.M. Chien ◽  
M.M. Reddy ◽  
V.C.C. Lee ◽  
D. Sujan

The unique properties of Inconel 718 make it a challenging material to machine especially in ball end milling operations due to high cutting force and temperature concentrated at the cutting zone. These essentially lead to accelerated tool wear and failure resulting in high costs and loss of production. In this research, finite element numerical simulation was performed using AdvantEdge to simulate ball end milling using an 8mm TiAlN coated carbide tool. Response Surface Methodology (RSM) is applied by using a 3 level 3 factorial Box-Behnken design of experiment with different combinations of cutting speed, feed rate, and depth of cut parameters with a selected range of parameters to simulate finishing operations. Temperature contour from finite element analysis showed that the highest temperature occurs near the depth of cut line just before the chip separates from the workpiece. Using multiple linear regression, a quadratic polynomial model is developed for maximum cutting force and a linear polynomial model peak tool temperature response respectively. Analysis of Variance (ANOVA) showed that feed rate had the most significance for cutting force followed by depth of cut. Also, cutting speed was found to have little influence. For peak tool temperature, cutting speed was the most significant cutting parameter followed by feed rate and depth of cut.


2019 ◽  
Vol 69 (4) ◽  
pp. 1-8
Author(s):  
Dasari Kondala Rao ◽  
Kolla Srinivas

AbstractIn various machining processes, the vibration signals are studied for tool condition monitoring often referred as wear monitoring. It is essential to overcome unpredicted machining trouble and to improvise the efficiency of the machine. Tool wear is a vital problem in materials such as nickel based alloys as they have high hardness ranges. Though they have high hardness, a nickel based alloy Inconel 718 with varying HRC (51, 53, and 55), is opted as work material for hard turning process in this work. Uncoated carbide, coated carbide and ceramic tools are employed as cutting tools. Taguchi’s L9 orthogonal array is considered by taking hardness, speed, feed and depth of cut as four input parameters, the number of experiments and the combinations of parameters for every run is obtained. The vibration signals are recorded at various stages of cutting, till the tool failure is observed. Taking this vibration signal data as input to ANOVA and Grey relation analysis (GRA) which categorizes the optimal and utmost dominant features such as Root Mean Square (RMS), Crest Factor (CF), Skewness (Sk), Kurtosis (Ku), Absolute Deviation (AD), Mean, Standard Deviation (SD), Variance, peak, Frequency and Time in the tool wear process.


Sign in / Sign up

Export Citation Format

Share Document