An efficient methodology to generate optimal inputs for the preliminary design of centrifugal compressor impellers

Author(s):  
Lakhdar Bourabia ◽  
Smail Khalfallah ◽  
Mahfoudh Cerdoun ◽  
Taha Chettibi

Preliminary design of centrifugal compressors is an emphasized step, which initiates the design process. Even with the use of quick analysis methods such as one-dimensional models, preliminary design still occupies a substantial part of the total design time. Among the factors that can lengthen this time or even cause the design failure is the inappropriate selection of the design input parameters. The present paper proposes a methodology to generate optimal inputs for the preliminary design, which reduces the design time and optimizes its overall performance. This is achieved, firstly, by performing an aerothermodynamic analysis that defines the appropriate input parameters, which will be used by a preliminary design code. This analysis has allowed identifying three pilot parameters (inlet relative Mach number, work input factor, and slip factor) to guide the generation of adequate input parameters. This input parameter generator, which reduces considerably the failure rate, is then exploited efficiently in an optimization process considering the pilot parameters as decision variables. Therefore, the proposed input parameter generator is coupled with a preliminary design code and an optimization algorithm. The proposed input parameter generator was validated on four existing compressors, showing a gain of more than 90% of the design time. Mainly, the proposed optimization has created a preliminary design trade-off having the target requirements and with optimized off-design performance.

2007 ◽  
Vol 29 (2) ◽  
pp. 117-126
Author(s):  
Nguyen Van Pho

The fuzzy analyzing process consists of different steps. In this paper, the author considers only the method for formulation of the membership function of fuzzy loads acting on the structure. Based on the membership function of fuzzy loads, the combinations of deterministic of the regression analyzing process will be determined. The membership function of fuzzy loads is selected by the triangular membership function. It is in conformity with the concept on selection of loads in the design standards. The combination of inputs for the analyzing process will be determined, based on the number of present times of the value of input parameters (including the deterministic parameters, fuzzy parameters and the random ones) in the schema of analysis. The number of present times of input parameters is either proportional to value of the corresponding membership function or to the value of the probabilistic density function. A method for determining the appropriate combination of deterministic inputs so that each input parameter will present only one time in each combination is proposed. To illustrate the proposed method, an example on the determination of input combinations of tornado's velocity in Vietnam is presented.


2007 ◽  
Vol 13 (4) ◽  
pp. 333-340
Author(s):  
Gintautas Šatkauskas

Input parameters, ie factors defining the market price of agricultural‐purpose land, are interrelated very often by means of non‐linear ties. Strength of these ties is rather different and this limits usefulness of information in the research process of land market prices. Influence of input parameter changes to the input parameters in case when there are rather substantial changes may be determined in someone direction with a sufficient precision, whereas in other directions with comparatively small changes of input parameters this influence is difficult to be separated from the “noise” background. Taking into account the above‐listed circumstances, the concept of economical‐mathematical model of land market should be as follows: there is carried out re‐parameterisation of the process by means of introduction of new parameters in such a way that the new parameters are not interrelated, and the full process is evaluated at the minimal number of these parameters. These requirements are met by the main components of the input parameters. Then normalisation of the main components is carried out and dependencies on new parameters are determined. It is easier to interpret the dependencies obtained having reduced the number of input parameters and the higher the non‐linearity of interrelations of primary land market data, the greater effect of normalisation of input-parameter components. The results are compared with the valuations of experts.


Author(s):  
Nitin Nagesh Kulkarni ◽  
Stephen Ekwaro-Osire ◽  
Paul F. Egan

Abstract 3D printing has enabled new avenues to design and fabricate diverse structures for engineering applications, such as mechanically efficient lattices. Lattices are useful as implants for biological applications for supporting in vivo loads. However, inconsistencies in 3D printing motivates a need to quantify uncertainties contributing to mechanical failure using probabilistic analysis. Here, 50 cubic unit cell lattice samples were printed and tested with designs of 50% porosity, 500-micron beam diameters, and 3.5mm length, width, and height dimensions. The average length, width, and height measurements ranged from 3.47mm to 3.48mm. The precision in printing with a 95% confidence level was greater than 99.8%. Lattice elastic moduli ranged from about 270 MPa to 345 MPa, with a mean of 305 MPa. Probabilistic analyses were conducted with NESSUS software. The distributions of input parameters were determined using a chi-square test. The first-order reliability method was used to calculate the probability of failure and sensitivity of each input parameter. The elastic modulus was the most sensitive among all input parameters, with 57% of the total sensitivity. The study quantified printing inconsistencies and sensitives using empirical evidence and is a significant step forward for designing 3D printed parts for mechanical applications.


2021 ◽  
Vol 1020 ◽  
pp. 83-90
Author(s):  
Thi Hong Tran ◽  
Tran Ngoc Giang ◽  
Ngoc Vu Ngo ◽  
Thanh Danh Bui ◽  
Thanh Tu Nguyen ◽  
...  

This study is to determine effects of the dressing parameters to the flatness tolerance (Fl) when grinding SKD11 steel using HaiDuong grinding wheel and also propose the suitable dressing parameters to obtain the smallest flatness tolerance. In this paper, the effects of the six input parameters including feed rate (S), depth of rough dressing cut (ar), rough dressing times (nr), depth of finish dressing cut (af), finish dressing times (nf) and non-feeding dressing (nnon) to the flatness tolerance were investigated. To find out the influence of each input parameter on output results, the S/N ratio was analysized. Evaluated experimental results show that, the average flatness tolerance was 4.05μm and deviation of this value was 11.38% compared with the predicted value.


1991 ◽  
Vol 81 (3) ◽  
pp. 796-817
Author(s):  
Nitzan Rabinowitz ◽  
David M. Steinberg

Abstract We propose a novel multi-parameter approach for conducting seismic hazard sensitivity analysis. This approach allows one to assess the importance of each input parameter at a variety of settings of the other input parameters and thus provides a much richer picture than standard analyses, which assess each input parameter only at the default settings of the other parameters. We illustrate our method with a sensitivity analysis of seismic hazard for Jerusalem. In this example, we find several input parameters whose importance depends critically on the settings of other input parameters. This phenomenon, which cannot be detected by a standard sensitivity analysis, is easily diagnosed by our method. The multi-parameter approach can also be used in the context of a probabilistic assessment of seismic hazard that incorporates subjective probability distributions for the input parameters.


2021 ◽  
Vol 15 (1) ◽  
pp. 7824-7836
Author(s):  
Thu Thi Nguyen ◽  
N.D. Trung

In sheet metal forming, thinning phenomenon is one of the most concerned topics to ameliorate the final quality of the manufactured parts. The thinning variations depend on many input parameters, such as technological parameters, geometric shape of die, workpiece’s materials, and forming methods. Hydrostatic forming technology is particularly suitable for forming thin-shell products with complex shapes. However, due to the forming characteristics, the thinning variations in this technology are much more intense than in other forming methods. Therefore, in this paper, an empirical study is developed to determine the thinning variations in hydrostatic forming for cylindrical cup. Measurement of thickness at various locations of deformed products are conducted to investigate the thickness distribution and determine the dependence of the largest thinning ratio on the input parameters (including the blank holder pressure, the relative depth of the die and the relative thickness of the workpiece). The results are expressed in charts and equation which allow determining the effect of each input parameter on the largest thinning ratio.


Author(s):  
Mikael Nolin ◽  
Niklas Andersson ◽  
Bernt Nilsson ◽  
Mark Max-Hansen ◽  
Oleg Pajalic

Sign in / Sign up

Export Citation Format

Share Document