On the thinning variations in hydrostatic forming of sheet metal

2021 ◽  
Vol 15 (1) ◽  
pp. 7824-7836
Author(s):  
Thu Thi Nguyen ◽  
N.D. Trung

In sheet metal forming, thinning phenomenon is one of the most concerned topics to ameliorate the final quality of the manufactured parts. The thinning variations depend on many input parameters, such as technological parameters, geometric shape of die, workpiece’s materials, and forming methods. Hydrostatic forming technology is particularly suitable for forming thin-shell products with complex shapes. However, due to the forming characteristics, the thinning variations in this technology are much more intense than in other forming methods. Therefore, in this paper, an empirical study is developed to determine the thinning variations in hydrostatic forming for cylindrical cup. Measurement of thickness at various locations of deformed products are conducted to investigate the thickness distribution and determine the dependence of the largest thinning ratio on the input parameters (including the blank holder pressure, the relative depth of the die and the relative thickness of the workpiece). The results are expressed in charts and equation which allow determining the effect of each input parameter on the largest thinning ratio.

2020 ◽  
Vol 34 (22n24) ◽  
pp. 2040144
Author(s):  
Nguyen Thi Thu ◽  
Nguyen Dac Trung

In manufacturing, thickness distribution and maximum thinning greatly affect product quality in sheet metal forming. They depend on many input parameters, such as technological parameters, geometric shape of die, workpiece’s materials and forming methods. Hydrostatic forming technology is particularly suitable for forming thin-shell products with complex shapes. However, due to the forming characteristics, the thinning phenomenon in this technology is much more intense than in other forming methods. Therefore, this study aims to determine the thickness distribution and the relationship between the maximum thinning ratio and input parameters including blank holder pressure, relative depth of the die and relative thickness of the workpiece in this technology. The chosen product shape is cylinder and the chosen method is the orthogonal second-order design. The results are expressed in graphs and functions and they can be applied in product design, calculation and control of input parameters in industrial manufacturing.


2012 ◽  
Vol 189 ◽  
pp. 147-151
Author(s):  
Xian Chang Mao ◽  
Hai Yan Lin

Forming process of AZ31B magnesium alloy cup parts in pressure-lubricating deep drawing was simulated by Dynaform at room temperature. The technological parameters which influence the wall thickness difference of cup parts were investigated in this paper, including internal pressure, blank holder force and punch corner radius, etc. Compared with the deformation behaviors of magnesium alloy in mechanical deep drawing and pressure-lubricating deep drawing, the wall thickness distribution of cup parts was discussed. The result shows that preferable deformation behaviors can be obtained in pressure-lubricating deep drawing when adopted adaptive technological parameters.


2011 ◽  
Vol 328-330 ◽  
pp. 1395-1402
Author(s):  
Zong Ke Shao ◽  
Zhong Guo Huang ◽  
Shun Yao Jin ◽  
Qing Hua Yuan ◽  
Yu Zhou

With the Superplastic forming technology, the problem that the forming of the complex titanium alloy parts is difficult has been solved. The high temperature forming characteristics of the titanium alloy material and the establishment of the constitutive model of material that will be used as the material model of the simulation of the material forming (the minimum thickness is larger than 0.8 mm) about the negative Angle parts are based on high-temperature tensile test. The influence of the thickness of the parts is analyzed from three different SPF schemes, which are simulated by the MSC.MARC software. The results demonstrate the parts taking advantage of two-stage SPF, which is consisted of concave die SPF method and convex die SPF method can meet the requirement of minimum thickness and improve the thickness distribution on the die draft sides. Furthermore, the thickness distribution of the parts is more uniform with the convex die SPF method.


2021 ◽  
Vol 11 (13) ◽  
pp. 5814
Author(s):  
Trung-Kien Le ◽  
Thi-Thu Nguyen ◽  
Ngoc-Tam Bui

Forming complex sheet products using hydrostatic forming technology is currently a focus of the majority of forming processes. However, in order to increase stability during the forming process, it is necessary to identify and analyze the dependency of the forming pressure and the quality of a product on input parameters. For the purpose of modeling the forming pressure, this paper presents empirical research on the product of a cylindrical cup made of various materials, including carbon steel (DC04), copper (CDA260), and stainless steel (SUS 304) with different thicknesses (0.8 mm, 1.0 mm, and 1.2 mm), under a defined range of binder pressures. The regression method is selected to formulate an equation that shows the relationship between the input parameters, including the materials (ultimate strength and yield stress), workpiece thickness, binder pressure and the output parameter, and the formation of fluid pressure. The mathematical equation allows us to determine the extent of the effect of each input on the forming pressure. The experimental results can be used for the easier planning and forecasting of the process and product quality in hydrostatic forming.


2021 ◽  
Vol 883 ◽  
pp. 181-186
Author(s):  
Philipp Müller ◽  
Sven Hübner ◽  
Daniel Rosenbusch ◽  
Hendrik Vogt ◽  
Bernd Arno Behrens

The increasing demand for resource-efficient production methods is driving the development of new technologies. Sheet bulk metal forming (SBMF) offers the possibility to combine sheet metal and bulk forming operations. This allows the production of complex functional components with secondary forming elements from sheet metal. Compared to other production techniques such as machining, a more efficient use of material can be achieved. Further advantages are a near net shape production and increased strain hardening. SBMF processes are limited by forming technology boundaries. These include high forming forces, incomplete mould fillings and limited surface qualities. In this research, the possibility of enhancing the material flow, improving surface quality and reducing the tool loads in SBMF-processes is investigated by using a superimposed oscillation. The focus here is on achieving a high surface quality of components produced by forming technology and an enhanced material flow during forming. For this purpose, a forming process for ironing an axial gear geometry is superimposed with an oscillation in the main force flow.


2006 ◽  
Vol 510-511 ◽  
pp. 330-333
Author(s):  
M.C. Curiel ◽  
Ho Sung Aum ◽  
Joaquín Lira-Olivares

Numerical simulations based on Finite Element Analysis (FEA) are widely used to predict and evaluate the forming parameters before performing the physical processes. In the sheet metal industry, there are basically two types of FE programs: the inverse (one-step) programs and the incremental programs. In the present paper, the forming process of the shield case piece (LTA260W1-L05) was optimized by performing simulations with both types of software. The main analyzed parameter was the blankholding force while the rest of the parameters were kept constant. The criteria used to determine the optimum value was based on the Forming Limit Diagram (FLD), fracture and wrinkling of the material, thickness distribution, and the principal strains obtained. It was found that the holding force during the forming process deeply affects the results, and a range of values was established in which the process is assumed to give a good quality piece.


2014 ◽  
Vol 556-562 ◽  
pp. 460-463 ◽  
Author(s):  
Xue Chen ◽  
Ming Zhe Li ◽  
Wen Hua Liu ◽  
Zhi Qiang Hou

To solve the problem of low material utilization in traditional stretch forming process, a flexible stretch forming method was proposed, which can be realized by interaction of the multi-point stretch forming die with discrete-gripper stretch forming machine. The principle and characteristics of sheet metal flexible stretch forming technology was introduced, structural composition and working principle of the multi-point stretch forming die and discrete-gripper stretch forming machine were expounded, and the technology experiments was carried out with a self-designed flexible stretch forming technology equipment for sheet metal. The experimental results indicate that structure of multi-point stretch forming die and discrete-gripper stretch forming machine are reasonable, and flexible stretch forming technology can be realized by above-mentioned die and machine, stretch forming parts has a good quality and its shape error can satisfy requirements of production.


Author(s):  
Jian An ◽  
A. H. Soni

Abstract The hydroforming technology, which is rapidly gaining popularity in the sheet metal and tube forming industry is reviewed. The features and the characteristics of the hydroforming process are described. The uniformly distributed fluid pressure covers the back side of the sheet as a die generates many advantages in the technical point of view as improving the part surface quality, reducing the forming severity and smoothing the thickness distribution. The benefits of using hydroforming technology are examined and analyzed in a technical level. The better part quality, less cost of tooling, materials saving and part weight reduction can be achieved using the hydroforming technology. The design methodologies for the hydroforming process parameters are reviewed and discussed in a certain detail. Computer-aided-engineering such as finite element simulation is suggested for such process parameter design.


1993 ◽  
Author(s):  
E. Chu ◽  
K. N. Shah ◽  
F. Pourboghrat ◽  
K. Chandorkar

Sign in / Sign up

Export Citation Format

Share Document