scholarly journals Designing nano-aluminum laden fuel pump for aviation applications

Author(s):  
Di Yan ◽  
Qian Tang ◽  
Ahmed Kovacevic ◽  
Yuanxun Zhang ◽  
Wei Liu ◽  
...  

In view of the fact that traditional liquid propellants cannot meet the design requirements of large-thrust flight vehicle, it has become a new trend to add nano-metal powder to liquid propellants to greatly increase density and specific impulse. In order to achieve the variable flow-rate and variable-proportion transportation of aviation fuel with nano-aluminum, a new type of solid-liquid mixing pumping system is designed, including powder conveying device, stirring device, pump and corresponding drive and transmission system. For the purpose of avoiding the frictional contact between the rotors, which will bring potential hazard to nano-aluminum powder, a non-contact twin-screw pump with synchronous gears is designed. Among them, based on the considerations of flow pulsation, volumetric efficiency and manufacturing difficulty, cycloid profile is adopted for screw rotors. After completing the functional design, geometric parameter design, structural design, 3D modeling, prototype manufacturing and preliminary performance estimation of the mixing pumping system, the performance of the screw feeder, agitator, screw pump was tested through experiments to meet the expected design requirements. The designed agitator can achieve sufficient mixing at 500 rpm in less than 10 s. Even though 50-micron clearances are designed with a relatively small rotor diameter, the volumetric efficiency of screw pump can reach above 50% when the discharge pressure is below 450 kPa and the flow rate is set as 10 L/min, the power of the screw pump is less than 700 W. This design facilitates the rapid real-time preparation of metallized propellants and provides a reference for further improving the design and control methods of nanoparticle two-phase flow pumping.

1987 ◽  
Vol 52 (2) ◽  
pp. 357-371 ◽  
Author(s):  
František Rieger

This paper summarizes the present state of the theory of calculation of the pumping capacity of screw rotors. The calculation starts from the equation for the volumetric flow rate of the flow between two unconfined plates modified by correction coefficients obtained from the relationships for the flow rate in simpler geometrical configurations to which the screw rotor may be, under certain circumstances, reduced.


Author(s):  
Ran Tao ◽  
Puxi Li ◽  
Zhifeng Yao ◽  
Ruofu Xiao

Centrifugal impeller is usually designed for water pumping. Fluid get energy from impeller but also lose energy when passing through it. To improve the efficiency and have a better operation stability, it is necessary to understand the flow energy dissipation in centrifugal impeller in pump mode. In this case, a thermodynamic analysis is conducted on a model centrifugal pump unit based on computational fluid dynamics (CFD) simulation. Typical performance curve is found with a positive-slope efficiency curve and a negative-slope head curve. With the decreasing of flow rate, both the impeller head and the flow energy dissipation (FED) will rise up. The FED is found related to the flow regime. The complex undesirable flow pattern induces high FED under off-design conditions especially at very small partial-load. Based on the visualization, FED is found with two main sources including the wall friction and the flow interaction. At over-load and design-load, the wall friction induced FED is dominant. With the decreasing of flow rate, flow interaction induced FED becomes dominant. The typical strong FED sites are found related to the striking, separation, merging and interaction of both smooth flow and vortical flow. The FED analysis will correlate the pump performance estimation and guide the design.


Author(s):  
Ali Hassannejadmoghaddam ◽  
Boris Kutschelis ◽  
Frank Holz ◽  
Tomas Börjesson ◽  
Romuald Skoda

Abstract Unsteady 3D flow simulations on a twin-screw pump are performed for an assessment of the radial, circumferential and flank gap flow effect on the pump performance. By means of the overset grid technique rigid computational grids around the counter-rotating spindles yield a high cell quality and a high spatial resolution of the gap backflow down to the viscous sublayer in terms of y^+ < 1 . An optimization of the hole-cutting process is performed on a generic gap flow and transferred to the complex moving gaps in the pump. Grid independence is ensured, and conservation properties of the overset grid interpolation technique are assessed. Simulation results are validated against measured pump characteristics. Pump performance in terms of pressure build-up along the flow path through the spindles and volume flow rate is presented for a wide range of spindle speed and pump head. Flow rate fluctuations are found to depend on head but hardly on speed. By a profound assessment of the respective radial, circumferential and flank gap contribution to the total backflow, the importance of the most complex flank gap is pointed out. Backflow rate characteristics in dependence on the pump head and the pump speed are presented.


1993 ◽  
Vol 17 (4) ◽  
pp. 305-310 ◽  
Author(s):  
T. Kiatsiriroat ◽  
P. Namprakai ◽  
J. Hiranlabh

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Dwayne Chang ◽  
Rustom P. Manecksha ◽  
Konstantinos Syrrakos ◽  
Nathan Lawrentschuk

Objective. To investigate the effects of height, external pressure, and bladder fullness on the flow rate in continuous, non-continuous cystoscopy and the automated irrigation fluid pumping system (AIFPS).Materials. Each experiment had two 2-litre 0.9% saline bags connected to a continuous, non-continuous cystoscope or AIFPS via irrigation tubing. Other equipment included height-adjustable drip poles, uroflowmetry devices, and model bladders.Methods. In Experiment 1, saline bags were elevated to measure the increment in flow rate. In Experiment 2, saline bags were placed under external pressures to evaluate the effect on flow rate. In Experiment 3, flow rate changes in response to variable bladder fullness were measured.Results. Elevating saline bags caused an increase in flow rates, however the increment slowed down beyond a height of 80 cm. Increase in external pressure on saline bags elevated flow rates, but inconsistently. A fuller bladder led to a decrease in flow rates. In all experiments, the AIFPS posted consistent flow rates.Conclusions. Traditional irrigation systems were susceptible to changes in height of irrigation solution, external pressure application, and bladder fullness thus creating inconsistent flow rates. The AIFPS produced consistent flow rates and was not affected by any of the factors investigated in the study.


Author(s):  
K. V. L. Narayana Rao ◽  
N. Ravi Kumar ◽  
G. Ramesha ◽  
M. Devathathan

Can type combustors are robust, with ease of design, manufacturing and testing. They are extensively used in industrial gas turbines and aero engines. This paper is mainly based on the work carried out in designing and testing a can type combustion chamber which is operated using JET-A1 fuel. Based on the design requirements, the combustor is designed, fabricated and tested. The experimental results are analysed and compared with the design requirements. The basic dimensions of the combustor, like casing diameter, liner diameter, liner length and liner hole distribution are estimated through a proprietary developed code. An axial flow air swirler with 8 vanes and vane angle of 45 degree is designed to create a re-circulation zone for stabilizing the flame. The Monarch 4.0 GPH fuel nozzle with a cone angle of 80 degree is used. The igniter used is a high energy igniter with ignition energy of 2J and 60 sparks per minute. The combustor is modelled, meshed and analysed using the commercially available ansys-cfx code. The geometry of the combustor is modified iteratively based on the CFD results to meet the design requirements such as pressure loss and pattern factor. The combustor is fabricated using Ni-75 sheet of 1 mm thickness. A small combustor test facility is established. The combustor rig is tested for 50 Hours. The experimental results showed a blow-out phenomenon while the mass flow rate through the combustor is increased beyond a limit. Further through CFD analysis one of the cause for early blow out is identified to be a high mass flow rate through the swirler. The swirler area is partially blocked and many configurations are analysed. The optimum configuration is selected based on the flame position in the primary zone. The change in swirler area is implemented in the test model and further testing is carried out. The experimental results showed that the blow-out limit of the combustor is increased to a good extent. Hence the effect of swirler flow rate on recirculation zone length and flame blow out is also studied and presented. The experimental results showed that the pressure loss and pattern factor are in agreement with the design requirements.


2003 ◽  
Vol 125 (3) ◽  
pp. 586-589 ◽  
Author(s):  
H.-P. Cheng ◽  
C.-J. Chen , ◽  
P.-W. Cheng ,

The CFD performance estimation of turbo booster vacuum pump shows the axial vortex and back flow is evident when the mass flow rate is increased. The pressure is increased from the pump inlet to the outlet for the low mass flow rate cases. But for high mass flow rate cases, the pressure is increased until the region near the end of the rotor then decreased. The calculated inlet pressure, compression ratio, and pumping speed is increased, decreased, and decreased, respectively, when the mass flow rate is increased. The pumping speed is increased when the rotor speed is increased.


2013 ◽  
Vol 345 ◽  
pp. 233-237
Author(s):  
Ben Liang Yu ◽  
Jun Fei Wu ◽  
Ying Yu

This paper first studied the feasibility in application and advantages of the the full metal single screw pump by the method of theoretical research . Then the paper deducted the motion characteristics of the rotor around the stator and flow rate of the metal single screw pump .It is pointed that the center of the rotor profile is always located in the long shaft of the section of stator in any section .As the rotor rotates, the center of the rotor profile on this section takes straight reciprocating motion along the long axis of stator section .The results indicate that it exists feasibility in the designing and processing of full metal single screw pump. Thereby it provides theoretical basis for the application of full metal screw pump.


2018 ◽  
Vol 204 ◽  
pp. 06007
Author(s):  
Mohammad Mahardika

Every year, Indonesia's population increase so as energy demand. To fulfill Indonesia's energy needs, the capacity of energy production should be increased. Indonesia government has made a solution by propose 35.000 MW program to increase energy production and electrification ratio in Indonesia. An insulated area where electricity did not reach, has many problem to get electricity such as limited infrastructure, low fuel energy content, and expensive turbine. To solve these problem, multi-vane expander (MVE) can be used to extract the low energy and is cheap. MVE have many advantages such as cheap, easy to manufacture, able to operate with 2 phase, and able to low speed operation. But, the disadvantage of this type of expander is leakage. In this paper, experimental and CFD analysis of MVE are conducted. The experiment generated power of 25.7 watt with isentropic and volumetric efficiency of 11.6% and 11.7% by using operating condition of 1.5 bar, 115.6 °C, 626 rpm, and mass flow rate of 80 kg/h. The CFD model of the expander is created with the same dimension and operating conditions as experimental. The result for isentropic efficiency is inversely proportional with mass flow rate and for volumetric efficiency, power, and expander rotation are directly proportional with mass flow rate.


Sign in / Sign up

Export Citation Format

Share Document