Grindability study of hard to cut AISI D2 steel upon ultrasonic vibration-assisted dry grinding

Author(s):  
Abhimanyu Chaudhari ◽  
Mohd Zaheer Khan Yusufzai ◽  
Meghanshu Vashista

Ultrasonic vibration-assisted dry grinding is a sustainable hybrid manufacturing technology that decreases the negative environmental impact of coolant, reduces manufacturing costs, and improves surface integrity. The present investigation analyses the mechanisms associated with ultrasonic vibration-assisted dry grinding of AISI D2 tool steel with an alumina grinding wheel. It also compares the influence of traditional dry grinding and traditional wet grinding modes with the ultrasonic vibration-assisted dry grinding mode at different ultrasonic vibration amplitudes. Ultrasonic vibration was applied to the sample in the longitudinal feed direction. Further, kinematics of the abrasive grit path during the traditional grinding and ultrasonic vibration-assisted dry grinding is presented schematically. In this research, the impacts of ultrasonic vibration amplitude as well as the depth of cut on the process yields such as ground surface topography, grinding force, specific grinding energy, force ratio, surface finish, microstructure, and hardness were investigated experimentally. Experimental results revealed that the highest decline in tangential and normal grinding forces in ultrasonic vibration-assisted dry grinding at ultrasonic vibration amplitude 10 µm and the reduction in surface roughness parameter ( Ra, Rq, and Rz) in ultrasonic vibration-assisted dry grinding was 43.23%, 42.59%, and 33.69%, respectively, in comparison to those in traditional dry grinding and 26.35%, 26.94%, and 27.48%, respectively, in comparison to those in traditional wet grinding. It was observed that ultrasonic vibration-assisted dry grinding is beneficial as the profile produced by ultrasonic vibration-assisted dry grinding has a comparatively flat tip, and profile points are shifted to the bottom of the mean line. This study is expected to assist ultrasonic vibration-assisted dry grinding of hard materials.

2009 ◽  
Vol 407-408 ◽  
pp. 577-581
Author(s):  
Shi Chao Xiu ◽  
Zhi Jie Geng ◽  
Guang Qi Cai

During cylindrical grinding process, the geometric configuration and size of the edge contact area between the grinding wheel and workpiece have the heavy effects on the workpiece surface integrity. In consideration of the differences between the point grinding and the conventional high speed cylindrical grinding, the geometric and mathematic models of the edge contact area in point grinding were established. Based on the models, the numerical simulation for the edge contact area was performed. By means of the point grinding experiment, the effect mechanism of the edge contact area on the ground surface integrity was investigated. These will offer the applied theoretic foundations for optimizing the point grinding angles, depth of cut, wheel and workpiece speed, geometrical configuration and size of CBN wheel and some other grinding parameters in point grinding process.


2011 ◽  
Vol 496 ◽  
pp. 7-12 ◽  
Author(s):  
Takazo Yamada ◽  
Michael N. Morgan ◽  
Hwa Soo Lee ◽  
Kohichi Miura

In order to obtain the effective depth of cut on the ground surface, a new grinding process model taking into account thermal expansions of the grinding wheel and the workpiece, elastic deformations of the grinding machine, the grinding wheel and the workpiece and the wheel wear was proposed. Using proposed model, the effective depth of cut was calculated using measured results of the applied depth of cut and the normal grinding force.


2007 ◽  
Vol 329 ◽  
pp. 57-62 ◽  
Author(s):  
Ju Dong Liu ◽  
Gui Cheng Wang ◽  
B.L. Wang ◽  
K.M. Chen

Grind-hardening was done on Steel AISI 1066 with a conventional surface grinder and a corundum grinding wheel, and research was conducted to probe into structures and properties of the hardened layer under varied depth of cut and cooling conditions. Results show that the hardened layer do not change noticeably in their martensitic structures and micro-hardness, which is ranged between 810870HV; But when the depth of cut increased or the dry grinding technique is adopted, the concentration of martensites and carbonides becomes lower, while the amount of residual austenites increases, and the completely hardened zone gets thicker. This conclusion serves as an experimental basis for the active control of properties of the grind-hardened layer of Steel AISI 1066.


2018 ◽  
Vol 198 ◽  
pp. 02004
Author(s):  
Junping Zhang ◽  
Weidong Wang ◽  
Songhua Li ◽  
Han Tao

The impacts of different linear speed of grinding wheel, grinding depth and workpiece feed speed with or without grinding fluid on grinding force were studied by plane grinding machining of zirconia ceramics. The impacts of different machining environment and grinding parameter on normal and tangential grinding forceswere studied by testing the grinding force during grinding with a force measuring device. The studies showed that the normal and tangential grinding forces decrease with the increase of the linear speed of grinding wheel and increase with the improvement of grinding depth and workpiece feed speed. The grinding depth has the greatest impacts on the normal and tangential grinding forces in dry grinding environment; while in wet grinding environment, the grinding depth exerts the greatest impacts on the normal grinding force and the linear speed of grinding wheel imposes the greatest impacts on the tangential grinding force. In addition, it was found that the normal grinding force in dry grinding is minor than that in wet grinding, that the tangential grinding force in dry grinding is greater than that in wet grinding, and that the grinding force ratio in dry grinding is lower than that in wet grinding.


2020 ◽  
Vol 4 (4) ◽  
pp. 114
Author(s):  
Akira Mizobuchi ◽  
Atsuyoshi Tashima

This study addresses the wet grinding of large stainless steel sheets, because it is difficult to subject them to dry grinding. Because stainless steel has a low thermal conductivity and a high coefficient of thermal expansion, it easily causes grinding burn and thermal deformation while dry grinding on the wheel without applying a cooling effect. Therefore, wet grinding is a better alternative. In this study, we made several types of grinding wheels, performed the wet grinding of stainless steel sheets, and identified the wheels most suitable for the process. As such, this study developed a special accessory that could be attached to a wet grinding workpiece. The attachment can maintain constant pressure, rotational speed, and supply grinding fluid during work. A set of experiments was conducted to see how some grinding wheels subjected to some grinding conditions affected the surface roughness of a workpiece made of a stainless steel sheet (SUS 304, according to Japanese Industrial Standards: JIS). It was found that the roughness of the sheet could be minimized when a polyvinyl alcohol (PVA) grinding wheel was used as the grinding wheel and tap water was used as the grinding fluid at an attachment pressure of 0.2 MPa and a rotational speed of 150 rpm. It was shown that a surface roughness of up to 0.3 μm in terms of the arithmetic average height could be achieved if the above conditions were satisfied during wet grinding. The final surface roughness was 0.03 μm after finish polishing by buffing. Since the wet grinding of steel has yet to be studied in detail, this article will serve as a valuable reference.


2011 ◽  
Vol 295-297 ◽  
pp. 78-82
Author(s):  
Yan Wu ◽  
Er Geng Zhang ◽  
Wen Zhong Nie

Based on the research for the structure of the ceramic nanocomposites’ intragranular for Al2O3/ZrO2(n),we did the test by the workpiece two-dimensional vibration grinding(WTDUVG), and focus on analyzing the characteristic and the effect element of the two-dimensional ultrasonic vibration grinding ceramic surface residual stress by the XRD diffraction. The result show that ceramic dimensional ultrasonic vibration grinding surface tensile stress is less than the same conventional grinding (CG) surface under tensile stress; two-dimensional ultrasonic vibration grinding surface residual compressive stress than conventional ground surface residual stress under the same grinding. Material removal mechanism of the grinding nature of the surface residual stress, when the material removaled by ductile deformation, grinding surface equal residual stress; when the material removaled by brittle- ductile mixed mode, the grinding surface tensile stress reduced, because the fracture of the ground surface, tensile stress released. As a results, the grit size of grinding wheel, Grinding depth and workpiece mechanical properties are the main technology factors affected the nature and size of the residual stress of ground surface.


2016 ◽  
Vol 874 ◽  
pp. 101-108 ◽  
Author(s):  
Amir Daneshi ◽  
Bahman Azarhoushang

Structuring of the grinding wheels is a promising method to reduce the forces involved in grinding, especially during dry grinding. In this paper, one of the methods of grinding wheel structuring is presented. The structuring process was modeled to find the corresponding dressing parameters for the desired structure dimensions. The cylindrical grinding operation with the structured wheels was simulated to produce a spiral free ground surface. Afterwards, the dry grinding experiments with the structured and non-structured wheels were carried out to evaluate the efficiency of the structured wheels. The results revealed that the grinding forces can be reduced by more than 50% when the grinding wheels are structured, while the surface roughness values increase by 80%.


2009 ◽  
Vol 49 (3-4) ◽  
pp. 261-272 ◽  
Author(s):  
Brahim Ben Fathallah ◽  
Nabil Ben Fredj ◽  
Habib Sidhom ◽  
Chedly Braham ◽  
Yoshio Ichida

2010 ◽  
Vol 431-432 ◽  
pp. 470-473
Author(s):  
Shi Chao Xiu ◽  
Zhi Jie Geng ◽  
Guang Qi Cai

Due to point contact cause, the point grinding process have the lower grinding power and heat to measure and the better cooling conditions. For green manufacturing, the point grinding process has the significance to reduce the consumption of grinding fluid and improve the ground surface integrity and the process greenness. This study analyzes the geometric configuration of the contact area between the wheel and the workpiece in point grinding process, establishes the geometric and mathematic models of the contact area, and investigates the relations between the grinding parameters. The dry point grinding experiments are performed on the ground surface integrity. These investigations show that the dry grinding can be achieved in point grinding process under less depth of cut and the higher grinding speed for the high machining greenness demand.


2010 ◽  
Vol 135 ◽  
pp. 260-264
Author(s):  
Dao Hui Xiang ◽  
Xin Tao Zhi ◽  
Guang Xi Yue ◽  
Bo Zhao ◽  
Q.T. Fan

Excellent wheel dressing technology can ensure the ground surface quality effectively. Because precision machining has a strict requirement on the wheel dressing, the wheel dressing with ultrasonic vibration was adopted, and the device of ultrasonic vibration dressing was also designed in this paper. On the base of analysis mechanism of ultrasonic vibration dressing wheel, the grinding experiment was carried out in different dressing conditions. The surface characteristics of ultrasonic dressing wheel and the influence of different dressing parameters on the workpiece surface quality were studied. Furthermore, the optimal dressing parameters have been obtained. The experiment results indicate that the micro cutting edge of grinding wheel distribute sparsely in circumferential directional but densely in axial direction in the condition of ultrasonic dressing, and it is particular characteristic of ultrasonic dressing. When the dressing and grinding conditions are suitable, the workpiece surface roughness can be reduced, but the conditions are not arbitrary. At the same time, the workpiece surface burn can be effectively reduced, even if the larger grinding depth is used during the grinding process.


Sign in / Sign up

Export Citation Format

Share Document