scholarly journals An Approach on Velocity and Stability Control of a Two-Wheeled Robotic Wheelchair

2020 ◽  
Vol 10 (18) ◽  
pp. 6446 ◽  
Author(s):  
Mostafa Nikpour ◽  
Loulin Huang ◽  
Ahmed M. Al-Jumaily

Conventional robotic wheelchairs (three or four-wheeled) which are statically stable are poor in mobility. Though a two-wheeled robotic wheelchair has better mobility, it is not statically stable and needs an active stability controller. In addition to mobility and stability, velocity control is also important for the operation of a wheelchair. Conventional stability and velocity controllers rely on the motion of the wheels and require high driving torque and power. In this paper, this problem is tackled by adding a compact pendulum-like movable mechanism whose main function is for stability control. Its motion and those of the wheels are controlled through a quasi-sliding mode control approach to achieve a simultaneous velocity and stability control with much less driving torque and power. Simulation results are presented to show the effectiveness of the proposed controller.

Author(s):  
Hak Yi ◽  
Je Hong Yoo ◽  
Reza Langari

In this paper, we have considered the new extendable modular multi-DOFs link to have a larger reachable workspace and more dexterous manipulability, as compared to a typical link. As a part of the extendable modular robot (EMR), our link is implemented to allow free motion when performing required tasks. In addition, this paper deals with a function of adjusting the link’s length (within 25% of the nominal length). Our investigation also focuses on the dynamics of a multi-DOFs link and the nonlinear controller for a given trajectory. The simulation results show the effectiveness of this control approach.


2021 ◽  
Vol 19 ◽  
pp. 257-267
Author(s):  
Ngoc Thuy Pham

In this paper, a (BS_SM) new Backstepping_ Sliding mode controll structure combined with a (VM_SC_ MRAS) improved stator current MRAS based on adaptive speed observer using neuron network and sliding mode are proposed to sensorless vector control for The propulsion system of Ship. The design of the controller is based on new BS and SM sructure to improve its performance and robustness. VM_SC_ MRAS improved adaptive speed observer is proposed to estimate the speed of propeller. The combination of BS-SM controller with VM_SC_MRAS adaptive speed observer can compensate for the uncertainties caused by the machine parameter variations, measurement errors, and load disturbances, improving dynamic performance and enhancing the robustness of the SPIM drive system, perfect tuning of the speed reference values, fast response of the motor current and torque, high accuracy of speed regulation. The simulation results lead to the conclusion that the proposed system for the propulsion system of ship is feasible. The simulation results on a test ship propelled showed that the proposed control approach operates satisfactorily


Author(s):  
Hossine Guermit ◽  
Katia Kouzi ◽  
Sid Ahmed Bessedik

Purpose This paper aims to present a contribution to improve the performance of vector control scheme of double star induction motor drive (DSIM) by using an optimized synergetic control approach. The main advantage of synergetic control is that it supports all parametric and nonparametric uncertainties, which is not the case in several control strategies. Design/methodology/approach The suggested controller is developed based on the synergistic control theory and the particle swarm optimization (PSO) algorithm which allow to obtain the optimal parameter of suggested controller to improve the performance of control system. Findings To show the benefits of proposed controller, a comparative simulation results between conventional PI controller, sliding mode controller and suggested controller were carried out. Originality/value The obtained simulation results illustrate clearly that synergetic controller ensures a rapid response, asymptotic stability of the closed-loop system in the all range operating condition and system robustness in presence of parameter variation in all range of operating conditions.


Author(s):  
Zheng-Gang Lu ◽  
Xiao-Jie Sun ◽  
Jun-Qi Yang

As the well-known difficulties are that feedback signals are not easy and economical measurement in practice for active control, this paper presents a study of state estimation for active control of independently rotating wheels (IRW) based on observers. The reduced-order observer and high-order sliding mode observer are used to provide reliable and accurate estimations of the wheel pair state and track curvature using practical sensors. This proposed method uses less sensors than the one of previous studies. Furthermore, lateral accelerator and yaw velocity sensors (gyros) are economical and available for active steering and stability control system to obtain the required feedback signals. The wheels’ relative rotational speed, track curvature and yaw angle of wheelsets are the feedback signals for IRW active control approach. Computer simulations are used to verify the effectiveness of proposed methods and assess control performance in stability and negotiation.


2017 ◽  
Vol 2 (4) ◽  
pp. 218-227
Author(s):  
Fouad INEL ◽  
Youcef ZENNIR

In this paper we present a new control architecture based on the robust sliding mode control applied to control a nonlinear system (parallel cable robot). This approach is widely used to address the uncertainties and disturbances of nonlinear systems and to improve the performance of the robot in terms of tracking a desired path. A dynamic model is presented followed by the description of the control approach used. To do this, numerical simulations were carried out by developing a specific code including a graphical user interface for a user-friendly real time. The simulation results for a dynamic model with sliding mode control are discussed for different trajectories applied to this robot, to confirm the validity of accurate tracking of a desired path before future work description.


Author(s):  
Xiaoqiang Sun ◽  
Yujun Wang ◽  
Yingfeng Cai ◽  
Pak Kin Wong ◽  
Long Chen

AbstractDue to the bus characteristics of large quality, high center of gravity and narrow wheelbase, the research of its yaw stability control (YSC) system has become the focus in the field of vehicle system dynamics. However, the tire nonlinear mechanical properties and the effectiveness of the YSC control system are not considered carefully in the current research. In this paper, a novel adaptive nonsingular fast terminal sliding mode (ANFTSM) control scheme for YSC is proposed to improve the bus curve driving stability and safety on slippery roads. Firstly, the STI (Systems Technologies Inc.) tire model, which can effectively reflect the nonlinear coupling relationship between the tire longitudinal force and lateral force, is established based on experimental data and firstly adopted in the bus YSC system design. On this basis, a more accurate bus lateral dynamics model is built and a novel YSC strategy based on ANFTSM, which has the merits of fast transient response, finite time convergence and high robustness against uncertainties and external disturbances, is designed. Thirdly, to solve the optimal allocation problem of the tire forces, whose objective is to achieve the desired direct yaw moment through the effective distribution of the brake force of each tire, the robust least-squares allocation method is adopted. To verify the feasibility, effectiveness and practicality of the proposed bus YSC approach, the TruckSim-Simulink co-simulation results are finally provided. The co-simulation results show that the lateral stability of bus under special driving conditions has been significantly improved. This research proposes a more effective design method for bus YSC system based on a more accurate tire model.


2021 ◽  
Vol 20 ◽  
pp. 1-11
Author(s):  
Ngoc Thuy Pham

In this paper, a (BS_SM) new Backstepping_ Sliding mode controll structure combined with a (VM_SC_ MRAS) improved stator current MRAS based on adaptive speed observer using neuron network and sliding mode are proposed to sensorless vector control for The propulsion system of Ship. The design of the controller is based on new BS and SM sructure to improve its performance and robustness. VM_SC_ MRAS improved adaptive speed observer is proposed to estimate the speed of propeller. The combination of BS-SM controller with VM_SC_MRAS adaptive speed observer can compensate for the uncertainties caused by the machine parameter variations, measurement errors, and load disturbances, improving dynamic performance and enhancing the robustness of the SPIM drive system, perfect tuning of the speed reference values, fast response of the motor current and torque, high accuracy of speed regulation. The simulation results lead to the conclusion that the proposed system for the propulsion system of ship is feasible. The simulation results on a test ship propelled showed that the proposed control approach operates satisfactorily.


Author(s):  
Wang Wenwei ◽  
Zhang Wei ◽  
Zhang Hanyu ◽  
Cao Wanke

This paper describes a novel yaw stability control strategy for a four-wheel-independent-drive electric articulated bus with four motors at the middle and rear wheels. The proposed control strategy uses a hierarchical control architecture. In the upper layer, a 3 degree-of-freedom reference model is established to obtain the desired vehicle states and the desired yaw moments of the front and rear compartments are determined by means of sliding mode control, respectively. The lower layer distributes differential longitudinal forces according to the desired yaw moments based on quadratic programming theory. The tire utilization rate is used as the optimization goal considering the actual constraints. To verify performance, three test cases are designed on the dSPACE-ASM simulation platform. The test results show the proposed control strategy can improve the yaw stability and the trajectory following performance of the bus under different driving conditions.


Sign in / Sign up

Export Citation Format

Share Document