Reduction of ground-borne vibrations from rail lines on viaducts by means of elastic anti-vibration mats

Author(s):  
Caiyou Zhao ◽  
Wang Ping ◽  
Mengting Xing ◽  
Qiang Yi ◽  
Liuchong Wang

In this paper, the effectiveness of elastic anti-vibration mats in reducing ground-borne vibrations from rail viaducts is investigated by means of theoretical analysis and is validated by the results of field tests. A two-step procedure is adopted for analyzing the vehicle-track-bridge-soil coupling system. In the first step, the train-track-bridge-pier subsystem is considered, and the bridge-bearing reaction force is solved. In the second step, the pier-pile-soil subsystem is considered, and the ground vibration solution is obtained by applying the negative bridge-bearing reaction force to the pier top on a pier-pile-soil model. The accuracy of the presented model is then verified in comparison with in-situ measurement results. On the basis of this comparison, a parametric study on the impact of anti-vibration mats on ground-borne vibrations was investigated theoretically, and the effectiveness of elastic anti-vibration mats with the suggested optimal parameters was further validated by field tests. The results show that when the stiffness of the elastic anti-vibration mats is 1.5 MPa/m, ground vibration decreases significantly and the vertical rail displacement agrees with high-speed railway regulations.

2020 ◽  
Vol 68 (4) ◽  
pp. 303-314
Author(s):  
Yuna Park ◽  
Hyo-In Koh ◽  
University of Science and Technology, Transpo ◽  
University of Science and Technology, Transpo ◽  
University of Science and Technology, Transpo ◽  
...  

Railway noise is calculated to predict the impact of new or reconstructed railway tracks on nearby residential areas. The results are used to prepare adequate counter- measures, and the calculation results are directly related to the cost of the action plans. The calculated values were used to produce noise maps for each area of inter- est. The Schall 03 2012 is one of the most frequently used methods for the production of noise maps. The latest version was released in 2012 and uses various input para- meters associated with the latest rail vehicles and track systems in Germany. This version has not been sufficiently used in South Korea, and there is a lack of standard guidelines and a precise manual for Korean railway systems. Thus, it is not clear what input parameters will match specific local cases. This study investigates the modeling procedure for Korean railway systems and the differences between calcu- lated railway sound levels and measured values obtained using the Schall 03 2012 model. Depending on the location of sound receivers, the difference between the cal- culated and measured values was within approximately 4 dB for various train types. In the case of high-speed trains, the value was approximately 7 dB. A noise-reducing measure was also modeled. The noise reduction effect of a low-height noise barrier system was predicted and evaluated for operating railway sites within the frame- work of a national research project in Korea. The comparison of calculated and measured values showed differences within 2.5 dB.


2005 ◽  
Vol 11 (6) ◽  
pp. 781-800 ◽  
Author(s):  
K. Itoh ◽  
X. Zeng ◽  
M. Koda ◽  
O. Murata ◽  
O. Kusakabe

When constructing a high-speed railway system in an urban area, the reduction of the ground vibration and noise generated by train passages is a vitally important environmental consideration. In this paper we focus on the development of a centrifuge vibration testing system, which can simulate dynamic loading acting on shallow foundations. The system is used to generate vertical vibration similar to that generated by high-speed trains. The characteristics of wave propagation in a shallow circular foundation on sand are investigated. The effects of two types of barriers on vibration reduction are studied. Additionally, the impact of using vibration attenuating materials to build trackbeds is evaluated.


2020 ◽  
Author(s):  
Axel Volkwein ◽  
Florian Hofstetter ◽  
Marc Hauser

<p>Temporary rockfall protection measures are often implemented by using so-called steel palisades. Such elements can described as a steel surface that is supported perpendicular to the slope surface. In the present case, several sheet piling sections are welded onto a steel frame to form an area 1.5m high and 3m long. At the lateral edges of the surface, steel sections, welded together to form a triangle, create the support of the front surface, so that one side of the triangle is parallel to the impact surface and another side is parallel to the slope surface. At the corners close to the ground, massive steel spikes allow penetration into the ground. The weight of a palisade is about 900kg. An example of such a palisade can be found in [1].</p><p>The above barriers are in usage since many years. However, their rockfall energy retention capacity has never been evaluated yet. For that reasons, the Swiss Federal Railways launched a project for a deeper understanding of the performance of the palisades; for an adequate selection of the protection measures and a reliable risk analyses with respect to the variety of rockfall events that can be expected at a specific construction site and might cause failure of a structure.</p><p>Failure limits of the palisades are expected regarding the following failure scenarios:</p><ul><li>tilting of the barrier over the valley side steel spikes</li> <li>displacement of the barrier due to insufficient action of the steel spikes</li> <li>failure of the front surface</li> </ul><p>In this contribution, the above mechanisms are evaluated by means of 1:1 field tests.  A detailed analysis of performance and failure states will be provided. Furthermore, potential solutions for simple but effective reinforcement of the barriers are discussed.</p><p>The field tests were carried out on a slope inclined at an angle of about 30 degrees. Test blocks with a minimum weight of 240kg are thrown onto the palisades with the help of a forestry cableway reaching impact speeds of up to 25m/s. The impact energies vary from 12 to 100 kJ. Impact location and impact speed are determined by means of laterally taken high-speed video records with a frame rate of up to 1000fps and a resolution of 800x600pxs. Furthermore, the accelerations in the test body were measured at 1000Hz and – for some of the tests - the acting anchorage forces at 5000Hz.</p><p> </p>


Author(s):  
Hongye Gou ◽  
Wenhao Li ◽  
Siqing Zhou ◽  
Yi Bao ◽  
Tianqi Zhao ◽  
...  

The Lanzhou-Xinjiang High-speed Railway runs through a region of over 500[Formula: see text]km that is amenable to frequent winds. The strong wind and rainfall pose a great threat to the safe operation of high-speed trains. To tackle the aforementioned climate challenges, this paper investigates the dynamic response of the high-speed train-track-bridge coupling system under the simultaneous action of winds and rains for the safe operation of trains. Specifically, there are four main objectives: (1) to develop a finite element model to analyze the dynamic response of the train-track-bridge system in windy and raining conditions; (2) to investigate the aerodynamic loads posed to the train-track-bridge system by winds and rains; (3) to evaluate the effects of wind speed and rainfall intensity on the train-track-bridge system; and (4) to assess the safety of trains at different train speeds and under various wind-rain conditions. To this end, this paper first establishes a train-track-bridge model via ANSYS and SIMPACK co-simulation and the aerodynamics models of the high-speed train and bridge through FLUENT to form a safety analysis system for high-speed trains running on the bridge under the wind-rain conditions. Then, the response of the train-track-bridge system under different wind speeds and rainfall intensities is studied. The results show that the effects of winds and rains are coupled. The rule of variation for the train dynamic response with respect to various wind and rain conditions is established, with practical suggestions provided for control of the safe operation of high-speed trains.


Author(s):  
Georgene M. Geary ◽  
Yichang (James) Tsai ◽  
Yiching Wu

Faulting is one of the three performance measures recognized by the Code of Federal Regulations (CFR) for jointed concrete pavements. U.S. Federal Highway Administration rules developed for the CFR require the state Departments of Transportation to use the AASHTO Standard R 36, Standard Method for Evaluating Faulting of Concrete Pavements, for measurement of faulting. R 36 allows both manual testing using a faultmeter and automatic testing using a high-speed inertial profiler (HSIP). There is a concern in the literature that the HSIP methods are not accurate enough for network level testing of faulting. Recent studies have also shown that three-dimensional (3-D) laser technology is showing promise for providing more accurate faulting measurements. Still, there currently is not a specific method in R 36 that utilizes 3-D data for gathering faulting measurements. This paper proposes a new method that takes full advantage of the full-coverage capabilities of 3-D to measure faulting more accurately and consistently. This method uses the comparison of smoothed areas on both sides of a joint instead of a single longitudinal profile to measure elevation differences. Field tests were performed to compare the 3-D method with manual readings taken with a Georgia faultmeter on two sections of interstate in Georgia. In addition, the impact of various footprints and measuring locations of faulting measurements using this 3-D technology were quantitatively evaluated using the proposed method. Based on this case study the new proposed 3-D method appears to be appropriate to be considered to be added as a 3-D automatic method in AASHTO R 36.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1803 ◽  
Author(s):  
Yaqi Wang ◽  
Zhigang Liu

Recently, low-frequency oscillation (LFO) has occurred many times in high-speed railways and has led to traction blockades. Some of the literature has found that the stability of the vehicle-grid coupling system could be improved by optimizing the control strategy of the traction line-side converter (LSC) to some extent. In this paper, a model-based predictive current control (MBPCC) approach based on continuous control set in the dq reference frame for the traction LSC for electric multiple units (EMUs) is proposed. First, the mathematical predictive model of one traction LSC is deduced by discretizing the state equation on the alternating current (AC) side. Then, the optimal control variables are calculated by solving the performance function, which involves the difference between the predicted and reference value of the current, as well as the variations of the control voltage. Finally, combined with bipolar sinusoidal pulse width modulation (SPWM), the whole control algorithm based on MBPCC is formed. The simulation models of EMUs’ dual traction LSCs are built in MATLAB/SIMULINK to verify the superior dynamic and static performance, by comparing them with traditional transient direct current control (TDCC). A whole dSPACE semi-physical platform is established to demonstrate the feasibility and effectiveness of MBPCC in real applications. In addition, the simulations of multi-EMUs accessed in the vehicle-grid coupling system are carried out to verify the suppressing effect on LFO. Finally, to find the impact of external parameters (the equivalent leakage inductance of vehicle transformer, the distance to the power supply, and load resistance) on MBPCC’s performance, the sensitivity analysis of these parameters is performed. Results indicate that these three parameters have a tiny impact on the proposed method but a significant influence on the performance of TDCC. Both oscillation pattern and oscillation peak under TDCC can be easily influenced when these parameters change.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiaokang Liao ◽  
Cai Yi ◽  
Fengyu Ou ◽  
Yi Zhang ◽  
Zili Chen ◽  
...  

With the increasing speed of high-speed trains, the service conditions of axle-box bearing system worsen, and meanwhile, the dynamic performance of the axle-box bearing directly affects the operational safety. However, the dynamic interactions of the axle-box bearing in the traditional vehicle-track system are often ignored. In this paper, a vehicle-track coupling dynamic model considering axle-box bearing has been built, and the effectiveness of the model is proved by field tests. Dynamic performance of the axle-box bearing has been analyzed and discussed through numerical simulations under different working conditions. Comparing the roller-raceway contact load characteristics under different working conditions, results show that the peak values of roller-outer raceway contact load with wheel-polygonal excitation are basically the same with those without wheel-rail excitation. However, most of the peak values of roller-outer raceway contact force under track irregularity and comprehensive excitation conditions are far greater than those under wheel-polygonal excitation and no wheel-rail excitation conditions, which indicates that the impact of track irregularity on the contact load is dominant.


Author(s):  
Penghao Li ◽  
Zhonglong Li ◽  
Zhaoling Han ◽  
Shengyang Zhu ◽  
Wanming Zhai ◽  
...  

In Northeast China and the areas along Sichuan-Tibet railway, collision between floating ice and piers of railway bridges seriously threatens the train operation safety. The safety of high-speed train running on the bridge subject to the impact of floating ice collision is rarely assessed considering the spatial interaction of the train-track-bridge-ice system. To evaluate the running safety and ride comfort of trains and the structural stability of railway bridges under the collision between floating ices and piers, a train-track-bridge (TTB) dynamic interaction model considering the impact of floating ice is established. Using the refined finite element model, the collision process of floating ice on bridge pier is simulated, and the impact loads are employed as the excitation input of the TTB dynamics model. Taking a 5 × 32 m simply-supported bridges as a case study, the influence of bridge structural parameters on the floating ice collision system is investigated, and then the dynamic responses of the TTB system induced by the floating ice impact loads are analyzed in detail. Finally, the effect of the ice impact loads on the running safety of the high-speed train is revealed. Results show that under the floating ice impact loads, the angle of the pier sharp-nose (APSN) and lateral stiffness of foundations are the key parameters that influence the dynamic responses of the bridge, and an improperly small lateral stiffness of foundation would lead to an instability of bridge structure. The influence of ice impact loads on the dynamic responses of the train is remarkable. The lateral vibration acceleration, derailment factor and lateral wheel rail force caused by the ice impact loads are all greater than those caused by the track irregularity, while the wheel unloading rate is slightly smaller. In addition, the running speed of train is also closely related to the running safety and ride comfort when the collision occurs. When the train speed exceeds 400 km/h, the train passing through the bridge would have the possibility of derailment.


1987 ◽  
Vol 3 (3) ◽  
pp. 276-286 ◽  
Author(s):  
Joseph Hamill ◽  
Michael Murphy ◽  
Donald Sussman

The mechanics of moving along a curved path suggest that runners must change their body positions and thus adjust their lower extremity function as they accomplish a track turn. The purpose of the present study was to investigate the changes in the kinetics and kinematics of the lower extremity as runners proceed around the turn of a 400-m track (radius 31.5 m). Five skilled runners served as subjects in the study and were required to perform 10 trials in three conditions, running at 6.31 m/s plus or minus 5% (4:15 min/mile pace). The right and left limbs on a track turn and the right limb on the straightaway were evaluated using ground reaction force data and kinematic data from high-speed film. Statistical analysis of the 18 ground reaction force variables and 4 kinematic variables suggested that the right and left limbs at the midpoint of the track turn were asymmetrical and that most of the differences occurred in the first portion of the footfall Significant differences were found in the touchdown angle, maximum pronation angle, all mediolateral variables, and in the vertical variables describing the collision phase of the footfall (p < .05). The data suggest that the etiologies of injuries to the right and left lower extremity differ, with right foot injuries being of the impact type and left leg injuries being of the overpronation type.


Sign in / Sign up

Export Citation Format

Share Document