The role of bending stress on the initiation of reverse transverse defects

Author(s):  
Soumyajit Mojumder ◽  
Hang Su ◽  
Cong Qiu ◽  
Peter Mutton ◽  
Aparna Singh ◽  
...  

This paper investigated the role of longitudinal reverse bending stress on the initiation of reverse transverse defects. The longitudinal reverse bending stress occurs due to the reverse bending of the rail between two-wheel passage leading to the generation of tensile bending stress at the railhead and the lower head areas. The longitudinal bending stress was investigated as part of a parametric study on the rail cant angle, rail stiffness, lateral-to-vertical load ratio, and rail profile. A finite element model was created by using ABAQUS to analyze the extent of reverse bending in rails with respect to the chosen set of parameters. Under different lateral-to-vertical load ratios of 0, 0.3, 0.5, and 0.7, the maximum stress at the rail lower gauge corner was found to vary between 14.57MPa and 15.47MPa under the reverse bending condition. Similarly, low values of tensile stress under the reverse bending scenario were observed with changes in the rail cant angle and axle spacing with respect to different coal and iron ore wagons. The results revealed that the magnitude of the bending stress under different conditions of reverse bending was not significant enough to initiate a crack at the lower gauge corner.

2020 ◽  
Vol 70 (1) ◽  
pp. 41-46
Author(s):  
Yaoji Deng ◽  
Youqun Zhao ◽  
Mingmin Zhu ◽  
Zhen Xiao ◽  
Qiuwei Wang

To overcome the shortcomings of traditional rigid road wheel, such as poor damping effect and low load-bearing efficiency, a new type of flexible road wheel, having a unique suspension-bearing mode, was introduced. The three-dimensional nonlinear finite element model of rigid and flexible road wheel, considering the triple nonlinear characteristics of geometry, material and contact, is established for numerical investigation of static loading performance. The accuracy of the finite element model of the rigid and flexible road wheel is verified by static loading experiment. The static loading performance of the rigid and flexible road wheels is numerically analyzed. The influence of vertical load on maximum stress and deformation of the rigid and flexible wheels is also studied. The results show that the contact pressure uniformity of the flexible road wheel is better than that of the rigid road wheel under the static vertical load, but the maximum stress and deformation of the flexible road wheel are greater than that of the rigid road wheel. However, this problem can be solved by increasing the number of hinge sets and optimising the joints. The research results provide theoretical basis for replacing rigid road wheel with flexible road wheel, and also provide reference for structural optimisation of flexible road wheel.


2021 ◽  
pp. 136943322110073
Author(s):  
Yu Cheng ◽  
Yuanlong Yang ◽  
Binyang Li ◽  
Jiepeng Liu

To investigate the seismic behavior of joint between special-shaped concrete-filled steel tubular (CFST) column and H-section steel beam, a pseudo-static test was carried out on five specimens with scale ratio of 1:2. The investigated factors include stiffening types of steel tube (multi-cell and tensile bar) and connection types (exterior diaphragm and vertical rib). The failure modes, hysteresis curves, skeleton curves, stress distribution, and joint shear deformation of specimens were analyzed to investigate the seismic behaviors of joints. The test results showed the connections of exterior diaphragm and vertical rib have good seismic behavior and can be identified as rigid joint in the frames with bracing system according to Eurocode 3. The joint of special-shaped column with tensile bars have better seismic performance by using through vertical rib connection. Furthermore, a finite element model was established and a parametric analysis with the finite element model was conducted to investigate the influences of following parameters on the joint stiffness: width-to-thickness ratio of column steel tube, beam-to-column linear stiffness ratio, vertical rib dimensions, and axial load ratio of column. Lastly, preliminary design suggestions were proposed.


2011 ◽  
Vol 413 ◽  
pp. 520-523
Author(s):  
Cai Xia Luo

The Stress Distribution in the Connection of the Spherical Shell and the Opening Nozzle Is Very Complex. Sharp-Angled Transition and Round Transition Are Used Respectively in the Connection in the Light of the Spherical Shell with the Small Opening and the Large One. the Influence of the Two Connecting Forms on Stress Distribution Is Analyzed by Establishing Finite Element Model and Solving it. the Result Shows there Is Obvious Stress Concentration in the Connection. Round Transition Can Reduce the Maximum Stress in Comparison with Sharp-Angled Transition in both Cases of the Small Opening and the Large Opening, Mainly Reducing the Bending Stress and the Peak Stress, but Not the Membrane Stress. the Effect of Round Transition on Reducing Stress Was Not Significant. so Sharp-Angled Transition Should Be Adopted in the Connection when a Finite Element Model Is Built for Simplification in the Future.


2013 ◽  
Vol 336-338 ◽  
pp. 760-763
Author(s):  
Hui Yue

A short explanation of the finite element method as a powerful tool for mathematical modeling is provided, and an application using constitutive modeling of the behavior of ligaments is introduced. Few possible explanations of the role of water in ligament function are extracted from two dimensional finite element models of a classical ligament. The modeling is extended to a three dimensional finite element model for the human anterior cruciate ligament. Simulation of ligament force in pitching motion of basketball player is studied in this paper.


2018 ◽  
Vol 29 (16) ◽  
pp. 3188-3198 ◽  
Author(s):  
Wissem Elkhal Letaief ◽  
Aroua Fathallah ◽  
Tarek Hassine ◽  
Fehmi Gamaoun

Thanks to its greater flexibility and biocompatibility with human tissue, superelastic NiTi alloys have taken an important part in the market of orthodontic wires. However, wire fractures and superelasticity losses are notified after a few months from being fixed in the teeth. This behavior is due to the hydrogen presence in the oral cavity, which brittles the NiTi arch wire. In this article, a diffusion-mechanical coupled model is presented while considering the hydrogen influences on the NiTi superelasticity. The model is integrated in ABAQUS finite element software via a UMAT subroutine. Additionally, a finite element model of a deflected orthodontic NiTi wire within three teeth brackets is simulated in the presence of hydrogen. The numerical results demonstrate that the force applied to the tooth drops with respect to the increase in the hydrogen amount. This behavior is attributed to the expansion of the NiTi structure after absorbing hydrogen. In addition, it is shown that hydrogen induces a loss of superelasticity. Hence, it attenuates the role of the orthodontic wire on the correction tooth malposition.


2021 ◽  
Author(s):  
Oguz DOGAN ◽  
Celalettin YUCE ◽  
Fatih KARPAT

Abstract Today, gear designs with asymmetric tooth profiles offer essential solutions in reducing tooth root stresses of gears. Although numerical, analytical, and experimental studies are carried out to calculate the bending stresses in gears with asymmetric tooth profiles a standard or a simplified equation or empirical statement has not been encountered in the literature. In this study, a novel bending stress calculation procedure for gears with asymmetric tooth profiles is developed using both the DIN3990 standard and the finite element method. The bending stresses of gears with symmetrical profile were determined by the developed finite element model and was verified by comparing the results with the DIN 3990 standard. Using the verified finite element model, by changing the drive side pressure angle between 20° and 30° and the number of teeth between 18 and 100, 66 different cases were examined and the bending stresses in gears with asymmetric profile were determined. As a result of the analysis, a new asymmetric factor was derived. By adding the obtained asymmetric factor to the DIN 3390 formula, a new equation has been derived to be used in tooth bending stresses of gears with asymmetric profile. Thanks to this equation, designers will be able to calculate tooth bending stresses with high precision in gears with asymmetric tooth profile without the need for finite element analysis.


2014 ◽  
Vol 875-877 ◽  
pp. 524-528
Author(s):  
Sofiane Guessasma ◽  
Mohameden Hbib ◽  
David Bassir

This paper aims at studying the effect of interfacial damage on the mechanical behavior of starch - hemp composite. The procedure encompasses an experimental investigation towards the determination of microstructural features and mechanical testing of the material. A finite element model is developed to account for a particular damage kinetics that triggers failure properties. Our results show that the experimental evidence of interfacial damage driven failure is achieved. Finite element model is able to capture this feature using an abrupt damage criterion. But in order to identify the observed behavior, the experimental response is matched with the numerical one. This process tunes the mechanical parameters to fit the experimental response. The optimization process conducted in this way leads to a precise determination of the mechanical parameters that quantifies the observed ultimate properties.


2014 ◽  
Vol 1078 ◽  
pp. 266-270
Author(s):  
Yu Feng Shu ◽  
Yong Feng Zheng

This paper establishes the finite element model of reachstacker spreader, makes static strength calculation under eight typical operating conditions with rated load, based on the calculation results, it points out the weaknesses of spreader and gives some corresponding improvement measures for the drawbacks. Further analysis shows that the maximum stress of improved spreader mechanism has reduced 10.1%, which demonstrates the effectiveness of improvements.


Sign in / Sign up

Export Citation Format

Share Document