scholarly journals Experimental research of absorption properties of rigid foam filled circular seamless tube energy absorber under quasi-static axial load

Author(s):  
J Tanasković ◽  
F Franklin ◽  
A Mitrović ◽  
A Dišić

The aim of this research work is investigations of absorption characteristics of a circular seamless tube collision absorber filled by rigid polyurethane (PU) foam under axial load. Shrinking of circular tube passing through cone bushing starts after absorber is activated at the moment of collision. The energy absorption realises in three ways: elastic-plastic deformation of the tube wall, friction between absorption elements and compression the rigid PU foam inside the tube. Using rigid PU foam, as the seamless tube filler, in the process of collision energy absorption increases absorption power in comparing to with only empty tube, as well as gives gradual increases of deformation resistance during deformation process. Experimental research was prepared and realized in the laboratory using the scaled samples. The effect of rigid PU foam, configuration of absorber filled by PU foam on the absorption power and manufacturing technology of the samples, are considered and discussed in this paper. The results indicate that the shrinking foam filled tube absorber has for about 18% bigger absorption power than the empty one. Formation of numerical model and numerical analyses of shrinking foam filled tube absorber were realized using ANSYS software package. Force vs. stroke (F(s)) diagrams obtained by tests and numerical analyses are in a good correlation which confirms formed numerical model as a suitable for further quasi-static analyses and for dimensioning the similar types of absorber.

2014 ◽  
Vol 875-877 ◽  
pp. 534-541 ◽  
Author(s):  
Chawalit Thinvongpituk ◽  
Nirut Onsalung

In this paper, the experimental investigation of polyurethane (PU) foam-filled into circular aluminum tubes subjected to axial crushing was presented. The purpose of this study is to improve the energy absorption of aluminium tube under axial quasi-static load. The aluminium tube was made from the AA6063-T5 aluminium alloy tubes. Each tube was filled with polyurethane foam. The density of foam was varied from 100, 150 and 200 kg/mP3P including with empty tube. The range of diameter/thickness (D/t) ratio of tube was varied from 15-55. The specimen were tested by quasi-static axial load with crush speed of 50 mm/min using the 2,000 kN universal testing machine. The load-displacement curves while testing were recorded for calculation. The mode of collapse of each specimen was analyzed concerning on foam density and the influence of D/t ratio. The results revealed that the tube with foam-filled provided significantly increment of the energy absorption than that of the empty tube. While the density of foam and D/t ratios increase, the tendency of collapse mode is transformed from asymmetric mode to concertina mode.


2013 ◽  
Vol 315 ◽  
pp. 872-878 ◽  
Author(s):  
S. Kanna Subramaniyan ◽  
Shahruddin Mahzan ◽  
Mohd Imran Ghazali ◽  
Ahmad Mujahid Ahmad Zaidi ◽  
Prasath Kesavan Prabagaran

Foam-filled enclosures are very common in structural crashworthiness to increase energy absorption. However, very less research has been targeted on potential use of natural/recycled material reinforced foam-filled tubes. Therefore, an experimental investigation was performed to quantify energy absorption capacity of polyurethane (PU) composite foam-filled circular steel tubes under quasi-static axial loading. The thickness of the tubes was varied from 1.9, 2.9 and 3.6 mm. The tubes were filled with PU composite foam. The PU composite foam was processed with addition of kenaf plant fiber and recycled rubber particles that were refined at 80 mesh particulates into PU system. The density of PU resin was varied from 100, 200 and 300 kgm-3. The PU composite foam-filled tubes were crushed axially at constant speed in a universal testing machine and their energy absorption was characterized from the resulting load-deflection data. Results indicate that PU composite foam-filled tubes exhibited better energy absorption capacity than those PU foam-filled tubes and its respective empty tubes. Interaction effect between the tube and the foam and incorporation of filler into PU system led to an increase in mean crushing load compared to that of the unfilled PU foam or tube itself. Relatively, progressively collapse modes were observed for all tested tubes. Findings suggested that composite foam-filled tubes could be used as crashworthy member.


2019 ◽  
Vol 50 (11) ◽  
pp. 5494-5509 ◽  
Author(s):  
M. Salehi ◽  
S. M. H. Mirbagheri ◽  
M. Arabkohi

2017 ◽  
Vol 21 (3) ◽  
pp. 838-864 ◽  
Author(s):  
Yuansheng Cheng ◽  
Tianyu Zhou ◽  
Hao Wang ◽  
Yong Li ◽  
Jun Liu ◽  
...  

The ANSYS/Autodyn software was employed to investigate the dynamic responses of foam-filled corrugated core sandwich panels under air blast loading. The panels were assembled from metallic face sheets and corrugated webs, and PVC foam inserts with different filling strategies. To calibrate the proposed numerical model, the simulation results were compared with experimental data reported previously. The response of the panels was also compared with that of the empty (unfilled) sandwich panels. Numerical results show that the fluid–structure interaction effect was dominated by front face regardless of the foam fillers. Foam filling would reduce the level of deformation/failure of front face, but did not always decrease the one of back face. It is found that the blast performance in terms of the plastic deflections of the face sheets can be sorted as the following sequence: fully filled hybrid panel, front side filled hybrid panel, back side filled hybrid panel, and the empty sandwich panel. Investigation into energy absorption characteristic revealed that the front face and core web provided the most contribution on total energy absorption. A reverse order of panels was obtained when the maximization of total energy dissipation was used as the criteria of blast performance.


2012 ◽  
Vol 585 ◽  
pp. 34-38 ◽  
Author(s):  
Manmohan Dass Goel ◽  
Laxminarayan Krishnappa

Modeling and numerical simulation of aluminum foam filled square tubes under axial impact loading is presented. The foam-filled thin-walled square tubes are modeled as shell wherein, foam core is modeled by incorporating visco-elastic plastic foam model in Altair® RADIOSS. Deformation and energy absorption studies with single, bi-tubular, and multi-tube structure with and without aluminum foam core are carried out for assessing its effectiveness in crashworthiness under the identical conditions. It is observed that the multi-tube structure with foam core modify the deformation modes considerably and results in substantial increase in energy absorption capacity in comparison with the single and multi-tube without foam core. Moreover, the multi-tube foam filled structure shows complicated deformation modes due to the significant effect of stress wave propagation. This study will help automotive industry to design superior crashworthy components with multi-tube foam filled structures and will reduce the experimental trials by conducting the numerical simulations.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5545 ◽  
Author(s):  
Izaz Raouf ◽  
Piotr Gas ◽  
Heung Soo Kim

Recently, in-vitro studies of magnetic nanoparticle (MNP) hyperthermia have attracted significant attention because of the severity of this cancer therapy for in-vivo culture. Accurate temperature evaluation is one of the key challenges of MNP hyperthermia. Hence, numerical studies play a crucial role in evaluating the thermal behavior of ferrofluids. As a result, the optimum therapeutic conditions can be achieved. The presented research work aims to develop a comprehensive numerical model that directly correlates the MNP hyperthermia parameters to the thermal response of the in-vitro model using optimization through linear response theory (LRT). For that purpose, the ferrofluid solution is evaluated based on various parameters, and the temperature distribution of the system is estimated in space and time. Consequently, the optimum conditions for the ferrofluid preparation are estimated based on experimental and mathematical findings. The reliability of the presented model is evaluated via the correlation analysis between magnetic and calorimetric methods for the specific loss power (SLP) and intrinsic loss power (ILP) calculations. Besides, the presented numerical model is verified with our experimental setup. In summary, the proposed model offers a novel approach to investigate the thermal diffusion of a non-adiabatic ferrofluid sample intended for MNP hyperthermia in cancer treatment.


2021 ◽  
Vol 15 ◽  
pp. 159-164
Author(s):  
Fauzan Djamaluddin

In this study, the researcher carried out a comparative investigation of the crashworthy features of different tubular structures with a quasi-static three bending point, like the foam-filled two and tri circular tube structures. Energy absorption capacities and failure modes of different structures are also studied. Furthermore, the general characteristics are investigated and compared for instance the energy absorption, specific energy absorption and energy-absorbing effectiveness for determining the potential structural components that can be used in the field of vehicle engineering. Experimental results indicated that under the bending conditions, the tri foam-filled structures were higher crashworthiness behaviour than the two foam-filled circular structures. Therefore, this study recommended the use of crashworthy structures, such as foam-filled tri circular tubes due to the increased bending resistance and energy-absorbing effectiveness.


Buildings ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 97 ◽  
Author(s):  
P. Sharafi ◽  
S. Nemati ◽  
B. Samali ◽  
M. Ghodrat

In this paper, the development process of a deployable modular sandwich panelized system for rapid-assembly building construction is presented, and its structural performance under some different action effects is investigated. This system, which includes an innovative sandwich panel and its integrated connections, can be used as structural walls and floors in quickly-assembled postdisaster housing, as well as load-bearing panels for prefabricated modular construction and semipermanent buildings. Panels and connections are composed of a pneumatic fabric formwork, and two 3D high-density polyethylene (HDPE) sheets as the skins, filled with high-density rigid polyurethane (PU) foam as the core. HDPE sheets manufactured with a studded surface considerably enhance stress distribution, buckling performance, and delamination strength of the sandwich panel under various loading conditions. The load-carrying behavior of the system in accordance with some American Society for Testing and Materials (ASTM) standards is presented here. The results show the system satisfies the codes’ criteria regarding semipermanent housing.


Sign in / Sign up

Export Citation Format

Share Document